Supporting information

Efficient CO_2 capture by deep eutectic solvents through reducing the reaction between carbenes and CO_2

Jiaxun Zhu^{*a*}, Bohao Lu,^{*b*} and Dezhong Yang^{*b*,*} ^{*a*}School of Materials Science and Technology, China University of Geosciences, No. 29 Xueyuan Road, Beijing 100083, China ^{*b*}School of Science, China University of Geosciences, No. 29 Xueyuan Road, Beijing 100083, China Corresponding author: Dezhong Yang, Email: yangdz@cugb.edu.cn

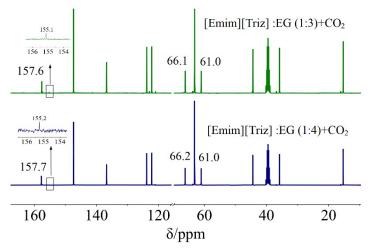


Fig. S1 ¹³C NMR spectra of [Emim][Triz]:EG (1:3) and (1:4) after CO₂ uptake.

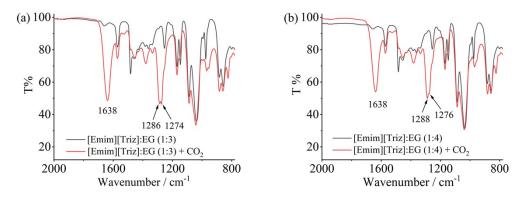


Fig. S2 FTIR spectra of [Emim][Triz]:EG (1:3) (a) and (1:4) (b) with and without CO₂.

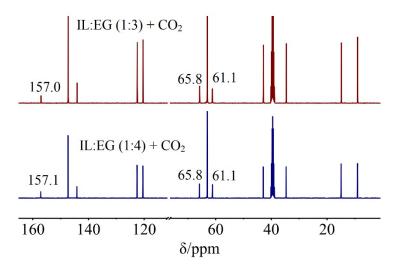


Fig. S3 ¹³C NMR spectra of [Emmim][Triz]:EG (1:3) and (1:4) after CO₂ uptake.

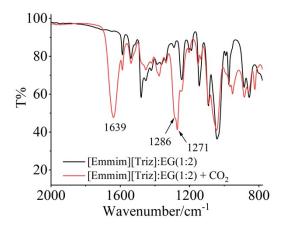


Fig. S4 FTIR spectra of [Emmim][Triz]:EG (1:2) with and without CO₂.

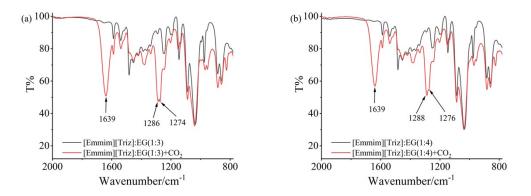
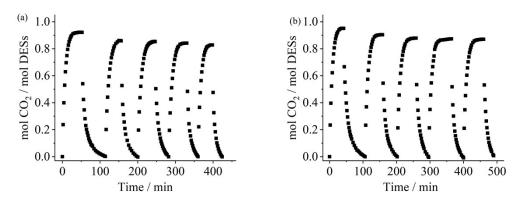



Fig. S5 FTIR spectra of [Emmim][Triz]:EG (1:3) (a) and (1:4) (b) with and without CO₂.

Fig. S6 The absorption-desorption cycles by [Emim][Triz]:EG (1:2) (a) (capture: 25 °C; release: 70 °C) and [Emmim][Triz]:EG (1:2) (b) (capture: 25 °C; release: 60 °C).