Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Synthesis of thiocarbonyl analogues of colourimetric coumarin-based chemosensors: altering the selectivity from Fe to Hg(II) and Cu(II) ions Supplementary Information

Stiaan Schoeman*, Neliswa Mama and Lisa Myburgh Department of Chemistry, Nelson Mandela University, P.O Box 77000, Port Elizabeth, 6031, South Africa Email: stiaan.schoeman@mandela.ac.za

Figure S 1: ¹ H NMR spectra of a) S1c, b) S1a, and c) S1b, showing the shifts in the proton peaks3
Figure S 2: ¹³ C NMR spectra of a) S1c, b) S1a, and c) S1b, showing the shifts in the carbon peaks3
Figure S 3: ¹ H NMR spectra of a) S2c, b) S2a, and c) S2b, showing the shifts in the proton peaks3
Figure S 4: ¹ H NMR of S1a
Figure S 5 : ¹³ C NMR of S1a
Figure S 6: HSQC of S1a
Figure S 7: FT-IR spectrum of S1a5
Figure S 8 : ¹ H NMR of S1b
Figure S 9 : ¹³ C NMR of S1b
Figure S 10: FT-IR spectrum of S1b6
Figure S 11: ¹ H NMR of S1c6
Figure S 12 : ¹³ C NMR of S1c
Figure S 13: FT-IR spectrum of S1c7
Figure S 14: ¹ H NMR of S2a 7
Figure S 15: ¹³ C NMR of S2a7
Figure S 16: HSQC of S2a
Figure S 17: FT-IR spectrum of S2a8
Figure S 18 : ¹ H NMR of S2b
Figure S 19 : ¹³ C NMR of S2b 9
Figure S 20: HSQC of S2b9

Figure S 21: FT-IR spectrum of S2b9
Figure S 22: ¹ H NMR of S2c10
Figure S 23: ¹³ C NMR of S2c10
Figure S 24: HSQC of S2c
Figure S 25: FT-IR spectrum of S2c11
Figure S 26: TLC plates during the reaction forming S1b and S1c under a) ambient light and b) UV light11
Figure S 27: Selectivity studies of S1a towards Fe ³⁺ 12
Figure S 28: Selectivity studies of a) S1b and b) S2b towards Hg ²⁺
Figure S 29: Selectivity studies of S1c towards a) Hg ²⁺ and b) Cu ²⁺ 13
Figure S 30: Titration studies of a) S1b and b) S2b with increasing amounts of Hg ²⁺ 13
Figure S 31: Titration studies of S1c with increasing amounts of a) Hg ²⁺ and b) Cu ²⁺ 13
Figure S 32: Calibration curve for a) S1b and b) S2b in the presence of Hg ²⁺ 14
Figure S 33: Calibration curve for a) S1c and b) S2c with increasing amounts of Hg ²⁺ 14
Figure S 34: The Benesi Hildebrand plot for a) S1b and b) S2b in the presence of Hg ²⁺ 14
Figure S 35: The Benesi Hildebrand plot for a) S1c and b) S2c in the presence of Hg ²⁺ 15
Figure S 36: Jobs plots of a) S1a and b) S1c with various mole fractions of Hg ²⁺ 15
Figure S 37: Reversibility studies of S1c with a) Hg ²⁺ and b) Cu ²⁺ in the presence of EDTA15

Figure S 1: ¹H NMR spectra of a) S1c, b) S1a, and c) S1b, showing the shifts in the proton peaks.

Figure S 2: ¹³C NMR spectra of a) S1c, b) S1a, and c) S1b, showing the shifts in the carbon peaks.

Figure S 3: ¹H NMR spectra of a) S2c, b) S2a, and c) S2b, showing the shifts in the proton peaks.

Figure S 6: HSQC of S1a.

Figure S 9: 13C NMR of S1b.

Figure S 12: ¹³C NMR of S1c.

Figure S 13: FT-IR spectrum of S1c.

Figure S 15: ¹³C NMR of S2a.

Figure S 17: FT-IR spectrum of S2a.

Figure S 18: ¹H NMR of S2b.

Figure S 20: HSQC of S2b.

Figure S 21: FT-IR spectrum of S2b.

Figure S 24: HSQC of S2c.

Figure S 25: FT-IR spectrum of S2c.

Figure S 26: TLC plates during the reaction forming S1b and S1c under a) ambient light and b) UV light.

 Table S 1: Selected ¹³C NMR peaks (in ppm) of all synthesised compounds.

	Lactone Carbonyl (🔺)	Ester Carbonyl (•)	Ethyl Carbon (★)
	(ppm)	(ppm)	(ppm)
S1a	155.21	163.10	62.00
S2a	156.12	162.92	61.84
S1b	192.16	164.89	62.28
S2b	191.83	164.94	62.24
S1c	192.40	210.96	69.54
S2c	191.63	211.05	69.54

Figure S 27: Selectivity studies of S1a towards Fe³⁺.

Figure S 28: Selectivity studies of a) S1b and b) S2b towards Hg²⁺.

Figure S 29: Selectivity studies of S1c towards a) Hg^{2+} and b) Cu^{2+} .

Figure S 30: Titration studies of a) S1b and b) S2b with increasing amounts of Hg^{2+} .

Figure S 31: Titration studies of S1c with increasing amounts of a) Hg^{2+} and b) Cu^{2+} .

Figure S 32: Calibration curve for a) S1b and b) S2b in the presence of Hg^{2+} .

Figure S 33: Calibration curve for a) S1c and b) S2c with increasing amounts of Hg²⁺.

Figure S 34: The Benesi Hildebrand plot for a) S1b and b) S2b in the presence of Hg²⁺.

Figure S 35: The Benesi Hildebrand plot for a) S1c and b) S2c in the presence of Hg²⁺.

Figure S 36: Jobs plots of a) S1a and b) S1c with various mole fractions of Hg^{2+} .

Figure S 37: Reversibility studies of **S1c** with a) Hg^{2+} and b) Cu^{2+} in the presence of EDTA.