Supporting Information

Mn doping induced electronic modulation of self-supported NiFe layered double hydroxides for oxygen evolution reaction

Duanduan Liu^{*1}, Yirui Tang², Kunran Liu⁴, Zhongli Wu², Qinhua Pan², Tiancheng Li², Jiayu Zhang², Chenxi Sun², Xinru Liu², Chenxi Sun², Xinru Liu², Xiaobing Xu¹, Ligang Ma¹, Yuzheng Lu¹, Min Yu², Changyun Chen², Shicheng Yan³

¹College of Electronic and Engineering, Nanjing Xiaozhuang University, Nanjing, Jiangsu 211100, P. R. China.

² College of Environmental and Science, Nanjing Xiaozhuang University, Nanjing, Jiangsu 211100, P. R. China.

³ Eco-materials and Renewable Energy Research Center (ERERC), Collaborative Innovation Center of Advanced Microstructures,

College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, P. R. China.

⁴ College of Food and Science, Nanjing Xiaozhuang University, Nanjing, Jiangsu 211100, P. R. China.

*Correspondence: liuduanduan@njxzc.edu.cn

Figure S1. SEM image of (a) NiFe-LDH, (b) MnNiFe-LDH.

Figure S2. HRTEM image of NiFe-LDH.

Figure S3. Full high-resolution XPS spectrum of Mn-doped NiFe-LDH.

Figure S4. OER activity of MnNiFe-LDH/NF electrocatalysts different Mn doping concentration with corresponding doping concentration at 30 °C in 1M KOH.

Figure S5. OER activity of MnNiFe-LDH electrocatalyst on NF at 30-70 °C with 85% iR compensation.

Figure S6. Cyclic voltammetry (CV) curves of (a) Ni(OH)₂/NF, (b) NiFe-LDH/NF and (c) MnNiFe-LDH/NF electrodes in the non-faraday double layer region at scan rates of 20-120 mV s⁻¹ in 1M KOH.

Figure S7. ECSA-normalized LSV curves.

1 0	5	1	1	
	Mn	Ni	Fe	
Mass%	0.81%	27.1%	0.32%	

Table S1. The mass percentage from ICP analysis for MnNiFe-LDH samples.

Table S2. The effects of temperature on pH and reference electrode potential.

Temperature (K)	рН	2.303RT/nF*pH (V)	$\Delta E_{Ag/AgCl,T}$ (V)	^{<i>a</i>} E _{RHE} (V)	^b E ^o _{H2O} (V)
303.15	13.7	0.82418	0.194	E _{Ag/AgCl} +1.01818	1.2245
323.15	13.1	0.84008	0.174	$E_{Ag/AgCl}{+}1.01408$	1.2065
343.15	12.5	0.85121	0.154	$E_{Ag/AgCl}{+}1.00521$	1.1885

^{*a*} All measured potentials in this work were converted to reversible hydrogen potential (RHE) according to Nernst equation of $E_{RHE} = E_{Ag/AgCl} + (2.303 \text{ RT/nF})\text{pH} + \Delta E_{Ag/AgCl,T}$, considering the effect of temperature on electrode slope by (2.303 RT/nF) pH and the effect of temperature on the Ag/AgCl reference electrode potential by a potential corrective term of $\Delta E_{Ag/AgCl,T} = -10^{-3}\text{T}+0.497$. The $\Delta E_{Ag/AgCl,T}$ - T relationship was obtained by fitting the experimental data from Ref. 1.

^{*b*} The temperature-dependent theoretical thermodynamic water splitting potential (E^{o}_{H2O}) is calculated by an empirical equation of $E^{o}_{H2O} = 1.229 \cdot 0.9 \times 10^{-3} (T \cdot 298)^{[2]}$.

Table S3. Fitting parameters of EIS data obtained by using the equivalent circuit proposed in Fig. 3e.

	$R_s(\Omega)$	$R_{ct}(\Omega)$	CPE-T (F)	CPE-P(F)
Ni(OH) ₂ /NF	2.04	5.35	0.23	0.51
NiFe-LDH/NF	1.87	3.48	0.13	0.70
MnNiFe-LDH/NF	1.99	1.40	0.17	0.78

References

- [1] D. T. Sawyer, A. Sobkowiak, J. L. Roberts, *Electrochemistry for Chemists, 2nd Edition*, 1995.
- [2] A. Awasthi, K. Scott, S. Basu, Int. J. Hydrogen Energy 2011, 36, 14779.