Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

## Supplementary material for "Reduced carrier-phonon scattering and enhanced absorption in silver-doped transition metal dichalcogenide photodetectors"

Md Samim Reza<sup>1</sup>, Henam Sylvia Devi<sup>1,2</sup>, Shubhangi Majumder<sup>3</sup>, Maninder Kaur<sup>1</sup>, Pramit Kumar Chowdhury<sup>3</sup>, and Madhusudan Singh<sup>\*1</sup>

<sup>1</sup>Functional Materials & Devices Laboratory, Department of Electrical Engineering, IIT Delhi, New Delhi, NCT, India, 110 016.

<sup>2</sup>Department of Chemistry, Dhanamanjuri University, Imphal, Manipur, India, 795001 <sup>3</sup>Department of Chemistry, IIT Delhi, New Delhi, NCT, India, 110 016.



Fig. S1: Extended photoresponse data for  $Ag:WS_2$  (test) photodetector under AM1.5G illumination conditions.

<sup>\*</sup>msingh@ee.iitd.ac.in



Fig. S2: Time-dependent photoresponse of  $WS_2$  (control) photodetector under AM1.5G illumination conditions.



Fig. S3: IV characteristics of the  $Ag:WS_2$  (test) fabricated devices: measured (a) rise time, and (b) fall (decay) time.