Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Supplementary Information

Promoting CO₂ hydrogenation to light olefins over high-entropy oxide-supported Fe-based catalysts by turning the strong metal-support interaction

Zhijiang Ni^{a*}, Hanyu Shen^a, Lin Su^a, Xiaoyu Chen^a, Yunlong Jiang^a, Cheng Feng^a and Chaochuang Yin^{b*}

a School of Mechanical Engineering & Urban Rail Transit, Changzhou University, Changzhou 213001, China.

b School of Chemistry and Materials Engineering, Liupanshui Normal University, Guizhou, 553004, China.

Total number of Pages: 17 Total number of Figures: 7 (Fig. S1-Fig. S7) Total number of Tables: 8 (Table S1-Table S8)

(b) FID signals in the channel 2

Fig. S1 Typical GC signals during CO₂ hydrogenation

Table S1 The test date of gas composition after reaction by TCD

Gas composition after reaction	Correction factor $f_{(w)}$
H2	0.0747
N2	1.0
СО	0.8561
CH4	0.2386
CO2	0.7432

Table S2 The test date of hydrocarbon composition after reaction by FID

Hydrocarbon composition	Correction factor
after reaction	$f_{(w)}$
C1	1
C2	0.4839964
C3	0.259133
C4	0.2011207
C5	0.115446
C6	0.115446
C7	0.115446
C8	0.115446
C9	0.115446

$$\begin{split} X_{CO_2} &= \frac{n_{in,CO_2} - n_{out,CO_2}}{n_{in,CO_2}} = \frac{F_{in} \times f_{CO_2} \times A_{in,CO_2} - F_{out} \times f_{CO_2} \times A_{out,CO_2}}{F_{in} \times f_{CO_2} \times A_{in,CO_2}} = 1 - \frac{A_{in,N_2} \times A_{out,CO_2}}{A_{out,N_2} \times A_{in,CO_2}} \\ n_{in,CO_2} &= \frac{A_{in,CO_2} \times f_{CO_2}}{A_{N_2} \times f_{N_2}} \times n_{N_2} \\ n_{out,CO_2} &= \frac{A_{out,CO_2} \times f_{CO_2}}{A_{N_2} \times f_{N_2}} \times n_{N_2} \\ n_{out,CO} &= \frac{A_{out,CO} \times f_{CO}}{A_{N_2} \times f_{N_2}} \times n_{N_2} \\ S_{CO} &= \frac{n_{out,CO}}{n_{in,CO_2} - n_{out,CO_2}} = \frac{A_{in,N_2} \times A_{out,CO}}{A_{out,N_2} \times A_{in,CO_2} - A_{in,N_2} \times A_{out,CO_2}} \\ n_{CH_4} &= \frac{A_{CH_4} \times f_{CH_4}}{A \times f} \times n_{N_2} \end{split}$$

$$n_{CH_4} = \frac{1}{A_{N_2} \times f_{N_2}} \times n_{N_2}$$

Canbon balance =
$$\frac{n_{out,CO_2} + \sum_{i=1}^{n} C_i \times i + n_{out,CO}}{n_{in,CO_2}} \times 100$$

The SMSI strength Calculation:

The SMSI strength was quantified by integrating multiple characterization parameters through a weighted formula. The calculation steps are as follows:

Parameter Selection and Normalization

Three key parameters were selected based on their established correlation with SMSI effects:

Oxygen vacancy density (Ov%): Determined from O 1s XPS peak deconvolution.

Reduction temperature shift (ΔT): Calculated as

 $\Delta T = T_{ref} - T_{sample}$, where T_{ref} is the Fe₂O₃ reduction temperature of FeNa/FeAl₂O₄ (428 °C) and T_{sample} is that of FeNa/HEOs (304 °C).

Fe³⁺ proportion (Fe³⁺%): Derived from Fe 2p XPS peak fitting (Fig. 4a).

Each parameter was normalized to a 0–100% scale using:

$$P_{nom} = \frac{P_{sample} - P_{min}}{P_{max} - P_{min}}$$

where P_{min} and P_{max} are the minimum and maximum values observed in the dataset (e.g., O_v %: 18.07–37.93%).

The weights of parameters (α , β , γ) were assigned based on their relative contributions to SMSI, supported by literature and experimental data:

 $O_v\%$ ($\alpha = 0.5$): Oxygen vacancies are critical for electron transfer at the metal-support interface, as demonstrated in SMSI systems like Pt/TiO₂¹.

 ΔT ($\beta = 0.3$): Reduction temperature shifts reflect the thermodynamic facilitation of metal oxide reduction by SMSI².

Fe³⁺⁰/₆ (γ =0.2): Higher Fe³⁺ content indicates electron depletion from Fe to the support, a hallmark of electronic SMSI³.

The final SMSI strength (%) was calculated as:

$$SMSI = \alpha \cdot O_{v}\% + \beta \cdot \Delta T_{norm} + \gamma \cdot Fe^{3+}\%$$

where ΔT_{norm} is the normalized reduction temperature shift.

Based on the calculation formulas of P_{nom} and SMSI mentioned above, as well as the data of Fe³⁺% and O_v% in supporting information Table S6, 7 and the reduction temperature in Fig. 4c of the main text, the SMSI values of each catalyst were calculated. The results are shown in Table S3.

Catalyst	SMSI (%)
FeNa/FeAl ₂ O ₄	30
FeNa/FeCoCuZnMnAl ₂ O ₄ -2	63.96
FeNa/FeCoCuZnMnAl ₂ O ₄ -1	80

	CO_2		Selectiv	vity ^a (%)			O/Dh	STY
Catalyst	Con(%)	CH ₄	$C_2^{=}-C_4^{=}$	$C_2^0 - C_4^0$	C_5 +	СО	- 0/P ^o	(mg/gcat·h)
FeNa/FeCoCu	26.02	20.72	27.01	0.47	22.06	1 27	2.01	95 17
$ZnMnAl_2O_4-2$	30.95	30.72	57.01	9.47	22.90	4.37	5.91	63.47
FeNa/FeCoCu	40.02	21.25	20.28	8 50	20.02	5 5 1	1 57	09 79
$ZnMnAl_2O_4-1$	40.05	51.25	39.28	8.39	20.95	5.51	4.37	90.70
FeNa/FeAl ₂ O ₄	38.32	44.07	14.21	27.85	14.03	9.53	0.51	27.77

Table S4 The catalytic performances of Fe-based catalysts in CO₂ hydrogenation.

Reaction conditions: 280 °C, 2.5 MPa, $H_2/CO_2 = 3$, GHSV=1650ml/(g*h), 100 h, Catalyst 0.4 g. ^a Hydrocarbon selectivity was normalized with the exception of CO.

^b O/P is the ratio of olefin ($C_2^{=}-C_4^{=}$) to paraffin ($C_2^{0}-C_4^{0}$).

Fig. S2 The CO_2 hydrogenation performance on the FeNa/FeCoCuZnMnAl₂O₄-2 catalyst including the detailed hydrocarbons distribution and ln(Wn/n) values.

Fig. S3 N₂ adsorption isotherms of (a) $FeAl_2O_4$, $FeCoCuZnMnAl_2O_4$ supports and (b) their corresponding pore size distributions derived from the adsorption branches using the BJH algorithm. N₂ adsorption isotherms of (c) $FeNa/FeAl_2O_4$, $FeNa/FeCoCuZnMnAl_2O_4$, and (b) their corresponding pore size distributions derived from the adsorption branches using the BJH algorithm.

Catalyst	L(nm) FeAl ₂ O ₄ ^a	L(nm) Fe ₂ O ₃ ^b	S_{BET}^{c} (m ² g ⁻¹)	D _p ^d (nm)	V _T ^e (cm ³ g ⁻¹)
FeCoCuZnMnAl ₂ O ₄ -2	8.07	_	43.66	22.55	0.23
FeCoCuZnMnAl ₂ O ₄ -1	9.7	-	51.9	27.37	0.32
FeAl ₂ O ₄	5.07	-	72.22	6.65	0.11
FeNa/FeCoCuZnMnAl ₂ O ₄ -2	9.61	18.73	28.68	18.86	0.11
FeNa/FeCoCuZnMnAl ₂ O ₄ -1	10.03	16.39	26.22	17.33	0.09
FeNa/FeAl ₂ O ₄	-	27.58	73.45	9.08	0.16

Table S5 Textural properties of supports and catalysts loaded with FeNa.

^a Crystal size calculated by Scherrer equation using FeAl₂O₄ peak from XRD.

^bCrystal size calculated by Scherrer equation using Fe₂O₃ peak from XRD.

^c Total surface area calculated using the Brunauer-Emmet-Teller (BET) method.

^d Average pore diameter calculated using the Barrett-Joyner-Halenda (BJH) method.

^e Total pore volume calculated using the BJH method.

Fig. S4 TEM images of the fresh (a) FeNa/FeCoCuZnMnAl₂O₄-2, (b) FeNa/FeCoCuZnMnAl₂O₄-1, and (c) FeNa/FeAl₂O₄ catalyst. (d) TEM images of the spent FeNa/FeCoCuZnMnAl₂O₄-1 catalyst.

Fig. S5 HR-TEM images of the fresh (a) FeNa/FeCoCuZnMnAl₂O₄-2 and (b) FeNa/FeAl₂O₄ catalyst. (c) HR-TEM images of the spent FeNa/FeCoCuZnMnAl₂O₄-1 catalyst.

Fig. S6 XRD patterns of spent $FeNa/FeAl_2O_4$, $FeNa/FeCoCuZnMnAl_2O_4$ -1 and $FeNa/FeCoCuZnMnAl_2O_4$ -2 catalysts.

Fig. S7 XPS spectra of spent FeNa/FeCoCuZnMnAl $_2O_4$ -1 catalyst in Cu2p region.

of Fe 2p.		
Catalyst	$Fe^{3+}/(Fe^{2+}+Fe^{3+})$ (%)	Fe _x C _y /all (%)
FeNa/FeAl ₂ O ₄	39.47	6.96
FeNa/FeCoCuZnMnAl ₂ O ₄ -2	42.8	8.74
FeNa/FeCoCuZnMnAl ₂ O ₄ -1	43.99	9.71

Table S6 The ratio peak area of the total peak area of the spent catalysts depends on the XPS spectra of Fe 2p.

Catalyst	fresh (%)	spent (%)
FeNa/FeAl ₂ O ₄	18.07	33.32
FeNa/FeCoCuZnMnAl ₂ O ₄ -2	35.89	45.05
FeNa/FeCoCuZnMnAl ₂ O ₄ -1	37.93	35.12

Table S7 The O_v ratio peak area of the total peak area of the fresh and spent catalysts depends on the XPS spectra of O 1s.

Somplos	The amou	The amount of		
Samples	Total	α peak	β peak	$(\mu mol/g)$
FeNa/FeAl ₂ O ₄	99	52	47	470
FeNa/FeCoCuZnMnAl ₂ O ₄ -2	96	89	7	228
FeNa/FeCoCuZnMnAl ₂ O ₄ -1	97	32	65	348

Table S8 The amount of CO_2 and H_2 desorbed in the CO_2 -TPD or H_2 -TPD profiles of the Fe-based catalysts.

References

(1) Tauster, S. J.; Fung, S. C.; Garten, R. L. Strong Metal-Support Interactions. Group 8 Noble Metals Supported on Titanium Dioxide. J. Am. Chem. Soc. 1978, 100 (1), 170–175. https://doi.org/10.1021/ja00469a029.

(2) Qiao, L.; Wang, X.; Zong, S.; Huang, Z.; Zhou, Z.; Fan, M.; Yao, Y. Anion-Doping-Mediated Metal–Support Interactions in CeO2 -Supported Pd Catalysts for CO2 Hydrogenation. ACS Catal. 2024, 14 (17), 13181–13194. https://doi.org/10.1021/acscatal.4c02874.

(3) Wang, W.; Huo, K.; Wang, Y.; Xie, J.; Sun, X.; He, Y.; Li, M.; Liang, J.; Gao, X.; Yang, G.; Lin, S.; Cao, F.; Jiang, H.; Wu, M.; Tsubaki, N. Rational Control of Oxygen Vacancy Density in In2 O3 to Boost Methanol Synthesis from CO2 Hydrogenation. ACS Catal. 2024, 14 (13), 9887–9900. https://doi.org/10.1021/acscatal.4c01929.