Nitrogen doping on fluorescent carbon dots synthesized from lychee exocarps for applications in UV tube down-conversion and pH-responsive curcumin delivery

Jingwei Gong ^{a b} Anyu Li^{1 c} Shuangwu Huang^{b*} Yern Chee Ching^{a*}, Ching Kuan Yong^d, Thennakoon M. Sampath Udeni Gunathilake^e, Nguyen Dai Hai^f, Chuah Cheng Hock^g

^a Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia

^b State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Institute of Microelectronics (IME), Shenzhen University, Shenzhen 518060, China

^c College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071

^d University of Reading Malaysia, Kota Ilmu, Persiaran Graduan, Educity, 79200 Nusajaya, Johor, Malaysia

^e Department of Polymer Science, Faculty of Applied Science, University of Sri Jayewardenepura, Gangodawila, 10250, Nugegoda, Sri Lanka

^fInstitute of chemical technology, Vietnam Academy of Science and Technology, District 12, Ho Chi Minh City, Vietnam

^gDepartment of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia. *Corresponding author: Email: <u>chingyc@um.edu.my</u>

Fig. S1. CIE color coordinates of (A) free N-doped CDs (excitation wavelength from 340 to 410 nm); (B)CD1(excitation wavelength from 320 to 420 nm); (C) CD2 (excitation wavelength from 360 to 430 nm); and(D) CD3 (excitation wavelength from 300 to 430 nm).

Fig. S2. (A) XRD patterns of CD1, CD2, CD3, and free N-doped CDs; (B) XRD pattern of melamine.

Fig. S3. The pore size distribution curve of the CD1, CD2, CD3, and free N-doped CDs.

Sample	Pore volume	Average pore size	Drug encapsulating
	(cm^3g^{-1})	(nm)	(%)
Free N-doped CDs	0.03034	12.6841	42
CD1	0.07289	13.4926	30
CD2	0.02968	13.7147	60

Table S1. The results of pore volume, average pore size, and drug encapsulation efficiency of CDs .

Fig. S4. Time-resolved phosphorescence decay and fitting curve (red line) of free N-doped CDs (A); CD1 (B); and CD2 (C).

Fig. S5. Zeta potential of CDs-Cur and Cur.

Sample	Zeta Potential (mV)	
Free N-doped CDs	-30	
CD1	-27	
CD2	-21	
Free N-doped CDs-Cur	-4.44	
CD1-Cur	-6.28	
CD2-Cur	-5.72	
Curcumin	-5.56	

Table S2. Zeta potential of CD1, CD2, and free N-doped CDs before and after loading curcumin.

Fig. S6. (A) Survival rate for *E.coli* at pH= 5.0 and 7.4; (B) survival rate for *S. aureus* at pH= 5.0 and 7.4.

Fig. S7. SEM images of *E. coli* treated with CDs-Cur.

Fig. S8. Relative viability of the HUVEC cells.

Madala	CD1	CD2	Free N-doped CDs
wiodels	pH=5.0 pH=7.4	pH=5.0 pH=7.4	pH=5.0 pH=7.4
Zero-order model	0.86535 0.90076	0.7322 0.94678	0.64318 0.94678
First-order model	0.96921 0.96714	0.95465 0.9783	0.95064 0.90508
Higuchi model	0.93017 0.92808	0.87643 0.93651	0.82999 0.72384
Korsmeyer-Peppas model	0.92703 0.93661	0.86964 0.96431	0.84126 0.76382
	n=0.67 n=0.74	n=0.52 n=0.80	n=0.43 n=0.36

Fig. S9. Color changes of the PVA and CDs@PVA films upon UV irradiation.

Fig. S10. Digital photographs of fabricated CDs@PVA films that was exposed to commercially available

UV tube (365 nm, 8 W) during OFF and ON condition.