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Effective Single Particle Hamiltonian

In our pursuit of evaluating the excitonic band structure within the presence of a moiré potential, we derive
an effective single-particle Hamiltonian. In order to accomplish this, we introduce operators for electron-hole
pairs, represented as P †

lk,l′k′ . These operators are defined as a summation over excitonic eigenmodes where
l represents the layer index [1]. These modes incorporate factors αll′/βll′ , accounting for the electron and
hole masses in the conduction and valence bands, respectively. For a WSe2-MoSe2 bilayer, these values are
determined as me/m0 = 0.36(0.6) and mh/m0 = 0.29(0.5) based on Ref. [2]. The exciton wave functions
satisfy the Wannier equation [3]. In the low-density regime, with a focus on the excitonic ground state, we
arrive at the free exciton Hamiltonian [1].

Hex =
∑
ll′Q

εll
′

QX
†
ll′QXll′Q. (1)

where εll
′

Q denotes the free exciton dispersion. Additionally, we transform the Hamiltonian for the moiré
potential [1] reading

HM =
∑
ll′Qq

Mll′

q X
†
ll′Q+qXll′Q + h.c. (2)

with the matrix element Mll′

q = V c
l (q)Jll′(βll′q) − V v

l′ (q)J ∗
ll′(αll′q) including the electronic moiré poten-

tial V
v/c
l in the valence and conduction band respectively, as well as the excitonic form factor Jll′(q) =∑

k ψ
∗
ll′(k)ψll′(k+ q) [1]. For the electronic moiré potentials we employ the microscopic approach developed

in Ref. [1] yielding

HM =
∑
LQn

ζLX
†
LQ+(−1)leGn

XLQ with (3)

ζL =

{
vcleJL(βLG0)− vvlhJL(αLG0) for le = lh

vcleJL(βLG0)− vv∗lh JL(αLG0) for le ̸= lh
, (4)

where L = (le, lh) and the parameters vλl are extracted from first principle computations and read vλl =
αl + exp(2πiσ/3)βl [1]. In this equation α/β are deduced moiré parameter which can be found in the table
below [1], the parameter σ represents the stacking parameter. Throughout this work we consider R-type
stacking (σ = 1) where both layers have a parallel orientation. The moiré potential creates a superlattice

TABLE I: Required DFT input parameters for our microscopic model.

band α[meV] β[meV]

vb-1(Mo) -20 -7.3

vb(W) -16.1 -8

cb(Mo) -14.7 -5.2

cb+1(W) -11.1 -5.4

with reciprocal lattice vectors Gn = Cn
3 G0, which only allows the mixing between discrete center-of-mass
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momenta. We utilise a zone-folding approach to take advantage of the new periodic lattice [4]. Hence, by

changing into the in the zone-folded eigenbasis F †
LsQ = X̃L,Q+Gs

we obtain

H =
∑
LsQ

ε̃L,Q+s1G1+s2G2
F †
LsQFLsQ +

∑
Lss′Q

M̃L
ss′F

†
LsQFLs′Q (5)

with the modified moiré mixing matrix

M̃
L

ss′ = ζL

(
δ(s1, s

′
1 + (−1)le)δ(s2, s

′
2) + δ(s1, s

′
1)δ(s2, s

′
2 + (−1)le) + δ(s1, s

′
1 − (−1)le)δ(s2, s

′
2 − (−1)le)

)

+ ζ∗L

(
δ(s1, s

′
1 − (−1)le)δ(s2, s

′
2) + δ(s1, s

′
1)δ(s2, s

′
2 − (−1)le) + δ(s1, s

′
1 + (−1)le)δ(s2, s

′
2 + (−1)le)

)
.

(6)

We change to the eigenbasis

Y †
LνQ =

∑
s

cν∗Ls(Q)F †
LsQ. (7)

where the coefficients fulfil the eigenvalue equation

ε̃L,Q+s1G1+s2G2c
ν
Ls(Q) +

∑
s′

M̃
L

ss′C
ν
Ls′(Q) = ELµQC

ν
Ls(Q). (8)

This new basis leads us to the final diagonal Hamiltonian

H =
∑
LµQ

ELµQY
†
LµQYLµQ (9)

which is further discussed in the main text.

Exicton-Phonon Interaction

We introduce the electron-phonon interaction Hamiltonian. We simplify the treatment of phonons by using
a Taylor expansion near high symmetry points, incorporating material-specific phonon energies. The phonon
dispersion, akin to electronic band structure, is characteristic to each material and can be determined through
first principles calculations. These DFPT results are incorporated into the electron-phonon matrix element
Dλ

qj [5, 6]. The Hamiltonian reads

Hel-ph =
∑

λ,q,k,j

Dλ
qja

†
λ,k+qaλ,k

(
bjq + b†j−q

)
, (10)

with k and q denoting electron and phonon momenta, respectively. Here, λ signifies the band index, and j
represents the phonon mode index. In this context, the operator aλ,k corresponds to the electron operator,
while bjq stands for the phonon operator.
By employing again electron-hole pair operator introduced in the previous section we perform a basis trans-
formation into an excitonic basis [7]. We obtain the following Hamiltonian

Hex-ph =
∑

Q,q,j,µ,ν

Dµν
qjX

†
µ,Q+qXν,Q

(
bjq + b†j−q

)
(11)

with the transformed exciton-phonon matrix

Dµν
qj = Dc

qjJ µν(βq)−Dc
qjJ µν(−αq). (12)

Here once again J µν(−αq) denotes the excitonic form factor.
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Polaron Transformation

Utilizing the Hamiltonian introduced earlier, we can construct a comprehensive Hamiltonian that encap-
sulates the entirety of our system’s dynamics and interactions. This encompassing Hamiltonian enables us to
thoroughly describe and analyze the behavior and properties of our system, taking into account both the free
excitonic contributions denoted by Hex and the phonon-related aspects characterized by Hph. Please note
that for the sake of simplicity, we omit the phonon mode index j. It’s important to emphasize that while
we do not explicitly write out this index, it still exists and is applicable in our calculations. Furthermore,
it incorporates the critical interaction term, Hex-ph, which embodies the intricate interplay between excitons
and phonons, allowing us to gain a deeper understanding of the intricate phenomena occurring within our
system.

H = Hex +Hph +Hex-ph = H0 +Hex-ph, (13)

We employ a polaron transformation to facilitate a unitary mapping of Hamiltonians.

H̃ = e−SHeS

= H + [S,H] +
1

2

[
S, [S,H]

]
+O(H3)

= H0 +Hex-ph + [S,H0] + [S,Hex-ph] +
1

2

[
S, [S,H]

]
+O(H3)

We omit the above Baker-Campbell-Hausdorff in third order. We define the transformation operator

S = −
∑
Qq

Dq

(
1

EQ+q − EQ + ℏΩ
b†−q +

1

EQ+q − EQ − ℏΩ
bq

)
X†

Q+qXQ. (14)

As one can easily ascertain, the commutator relation below follows from this transformation

[S,H0] = −Hex-ph. (15)

Thus, we obtain the new Hamiltonian

H̃ = H0 +
1

2
[S,Hex-ph]. (16)

Using many-particle Fock states of the unperturbed Hamiltonian, denoted as |n⟩ with corresponding eigen-
values En, we can derive the matrix elements of the operator S in this eigenbasis from Equation (15).

⟨n|S |m⟩ = ⟨n|Hex-ph |m⟩
En − Em

(17)

Which yields for our new Hamiltonian [8, 9]

H̃ = H0 −
1

2

∑
lmn

⟨l|Hex-ph |m⟩ ⟨m|Hex-ph |n⟩

(
1

Em − En
− 1

El − Em

)
|l⟩ ⟨n| (18)

In order to obtain an effective Hamiltonian, we perform a trace over the phonons within a bath approximation.
As a consequence, the initial states represented as |n⟩ and the final states represented as |l⟩ must maintain
the same phonon configuration. This constrains the processes to involve a two-step sequence where a phonon
is first absorbed and then subsequently emitted with the same momentum or vice versa. Additionally,
we need to account for energy conservation in these processes. As an example, considering one of these
processes, the energy change associated with the absorption of a phonon with energy ℏΩ can be expressed
as Em − En = EQ+q − EQ − ℏΩ. It’s important to note that we intentionally neglect two-particle processes
in our calculations. This set of assumptions and considerations ultimately leads us to the final form of the
Hamiltonian.

H̃ = H0 −
∑
Q,q

|Dq|2
(

nq
∆E − ℏΩ

+
nq + 1

∆E + ℏΩ

)
X†

QXQ.
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where ∆E = EQ+q − EQ. We can identify a polaron renormalized energy as

ẼQ = EQ −
∑
q

|Dq|2
(

nq
∆E − ℏΩ

+
nq + 1

∆E + ℏΩ

)
.

Performing a Taylor expansion on the second term for small Q we obtain

ẼQ = EQ −
∑
q

|Dq|2
[

nq
E(q)− ℏΩ

{
1−

ℏ2

mQ · q
(E(q)− ℏΩ)

+

(
ℏ2

mQ · q
(E(q)− ℏΩ)

)2}

+
(nq + 1)

E(q) + ℏΩ

{
1−

ℏ2

mQ · q
(E(q) + ℏΩ)

+

(
ℏ2

mQ · q
(E(q) + ℏΩ)

)2}]

Upon integration over q, the contributions linear in q vanish. Consequently, we are left with two key terms:
one responsible for shifting the original exciton energy, denoted as EPolaron (representing the polaron shift),
and the other term corresponds to a mass renormalization factor denoted as λ. In a more concise form, we
can express the new energy as:

ẼQ = −EPolaron +
ℏ2Q2

2m∗ , (19)

with m∗ = (1 + λ)m. The individual terms can be specified as follows:

EPolaron =
∑
q

|Dq|2
(

nq
E(q)− ℏΩ

+
(nq + 1)

E(q) + ℏΩ

)
(20)

λ =
2ℏ2

m

∑
q

|Dq|2q2

(
�������:0nq
(E(q)− ℏΩ)3

+
(nq + 1)

(E(q) + ℏΩ)3

)
. (21)

Observing the mass renormalization term, it becomes apparent that the first term vanishes during the inte-
gration over q. This can be confirmed through a residue analysis.
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der waals heterostructures,” Nano letters 20, 8534–8540 (2020).
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