Supporting Information

Ordered mesoporous carbon with binary CoFe atomic species

for highly efficient oxygen reduction electrocatalysis

Fengying Pan,^{‡,a} Ziyan Shen,^{‡,a} Xianjun Cao,^a Yuxia Zhang,^b Cheng Gong,^a Jinhu Wu,^a Jinqiang Zhang,^{*,c} Hao Liu,^{*,c} Xiaowei Li^{*,d} and Yufei Zhao^{*,a,c}

^a Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China

^b School of Materials Science and Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, P. R. China

^c Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia

^d School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai 200444, People R. China

Section S1. Experimental Section

1.1 Chemicals and Materials

All chemicals were used as received without further purification. Tetraethyl orthosilicate (TEOS) and P-123 (PEG-PPG-PEG) were obtained from Sigma-Aldrich Co., Ltd. hydrochloric acid (HCl) was purchased from Sinopharm Chemical Reagents Co., Ltd. Cobalt nitrate hexahydrate ($Co(NO_3)_2 \cdot 6H_2O$), ferric nitrate nonahydrate ($Fe(NO_3)_3 \cdot 9H_2O$), 2-Methylimidazole, sodium hydroxide (NaOH), potassium hydroxide (KOH) and Methyl alcohol (MeOH) were received from Shanghai Titan Chemical Co., Ltd.

1.2 Materials Preparations

Preparation of CoFe/NC-750. CoFe/NC-750 was obtained by using SBA-15 as hard template. Typically, SBA-15 (0.2000 g) was added to a clear solution formed by 2methylimidazole (0.2497 g) and MeOH (30 mL), and the mixture was stirred at 80 °C until all the MeOH evaporated. Subsequently, $Co(NO_3)_2 \cdot 6H_2O$ (0.2166 g) and $Fe(NO_3)_3 \cdot 9H_2O$ (0.1009 g) were dissolved in 30 mL MeOH, added to the above solid solution, and stirred at 80°C until all the MeOH evaporated. Afterwards, the collected sample was pyrolyzed under Ar atmosphere at 750 °C for 2 h. Repeating the above steps three times to ensure that CoFe-MOF grows on the surface and pores of SBA-15 and is carbonized by subsequent pyrolysis. Then the SBA-15 template and exposed metal particles were removed by 2 M NaOH and 0.5 M H₂SO₄ hot solution, respectively. The final product was achieved after another annealing at the same conditions at 750 °C. **Preparation of Co/NC-750 and Fe/NC -750.** Co/NC and Fe/NC catalysts were prepared by similar method to CoFe/NC without adding $Fe(NO_3)_3 \cdot 9H_2O$ or

 $Co(NO_3)_2 \cdot 6H_2O$, respectively.

Preparation of CoFe/NC-T. CoFe/NC-T (T= 700 °C, 800 °C, 850 °C) catalysts were fabricated with similar procedure to CoFe/NC-750, but at different carbonization temperature.

1.3 Material Characterizations

Scanning electron microscope (SEM, JSM-7500F), transmission electron microscopy (TEM, JEM-2100F) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM, JEM-ARM300F) were used to investigate morphologies, structures and compositions of samples. X-ray diffraction (XRD) patterns were taken on a D/MAX2200V PC (Cu K α (λ = 0.15406 nm), 40 kV, 40 mA). Raman spectra was recorded on a Renishaw inVia Qontor. X-ray photoelectron spectroscopy (XPS) patterns were carried out on a Thermo Scientific K-Alpha. N₂ adsorption-desorption isotherms were obtained on an ASAP 2460 equipment. Inductively coupled plasma-mass spectrometry (ICP-MS) were collected on a Aglient 7800.

1.4 Electrochemical Measurements

The ORR performance evaluation of catalysts was conducted on a PINE electrochemical instrumentation (Pine AFCBP1) with a standard three-electrode setup. The catalysts were dropped on rotating disk electrode (RDE) (GC, 5 nm in diameter) acting as the working electrode, Hg/HgO electrode and carbon rod were used as the

reference electrode and the counter electrode, respectively. Catalysts (1 mg) and Nafion solution (5 μ L, 5 wt.%) were added into ethanol (250 μ L) and the obtained mixture was ultrasonically treated for 30 min to form a homogeneous ink. After that, 15 μ L catalytic ink was loaded onto the RDE with a loading area of 300 μ g cm⁻². The ORR performances were evaluated in O₂-saturated 1 M KOH solution at a scan rate of 10 mV s⁻¹ by linear sweep voltammograms (LSV). All of potentials are referenced to the reverse hydrogen electrode (RHE) with the calibration equation: $E_{(RHE)} = E_{(Hg/HgO)} + 0.059 \times pH + 0.098$. The electron transfer numbers (n) and the yield of peroxide (H₂O₂%) of the catalysts were investigated by the rotating ring-disk electrode (RRDE) experiment at a sweep rate of 10 mV s⁻¹ with rotating speeds ranging from 400 to 2025 rpm.

The kinetic current (j_K) was calculated according to the Koutecky-Levich equation (1) and (2). For RRDE measurement, n and H₂O₂% were calculated as the following equation (3) and (4).

$$\frac{1}{j} = \frac{1}{j_L} + \frac{1}{j_K} = \frac{1}{B\omega^2} + \frac{1}{j_K} (1)$$

$$B = 0.62nFC_{0_2}D_0^{2/3}\gamma^{1/6} (2)$$

$$n = 4 \times \frac{I_d}{I_d + \frac{I_r}{N}} (3)$$

$$H_2O_2\% = 200 \times \frac{\frac{I_r}{N}}{I_d + \frac{I_r}{N}} (4)$$

In these equations, *j* is the measured current density, j_L and j_K represent the diffusion-limiting current density and kinetic-limiting current density, respectively. ω is the angular velocity of electrode. *n* is the transferred electron number. *F* is the Faraday constant (= 96485 C mol⁻¹). *Co*₂ is the bulk O₂ concentration in 0.1 M KOH solution (1.2×10⁻³ mol/L). *D*₀ is the diffusion coefficient of O₂ in electrolyte (1.9×10⁻⁵ cm²/s) and Υ is the kinematic viscosity of the electrolyte (0.01 cm²/s). *I*_d and *I*_r represent the disk current and the ring current, respectively, and *N* is the current collection efficiency of the Pt ring (*N* = 0.4).

Section S2 Computational methods

Vienna Ab initio Simulation Package (VASP) was used to calculate the binding energy between catalysts and intermediates. The Perdew, Burke and Ernzerhof (PBE) parameterized generalized exchange-correlation interactions are implemented by the VASP package. The kinetic energy cutoff used in all calculations was 400 eV. A (2 × 2 × 1) Monkhorst-Pack *k*-point sampling was used for all surface calculations. H₂O and H₂ calculations were performed in boxes of 15 Å × 15 Å × 15 Å.

Section S3 Supplementary Figures

Figure S1. (a) SEM image and (b) BET of SBA-15.

Figure S2. (a) SEM, (b-c) TEM images of CoFe/NC-750.

Figure S3. (a) HAADF image, and (b) corresponding EELS mappings of CoFe/NC-

750.

Figure S4. (a-d) SEM images CoFe/NC-700, CoFe/NC-750, CoFe/NC-800 and CoFe/NC-850.

Figure S5. (a-b) Nitrogen adsorption/desorption isotherm of CoFe/NC-700, CoFe/NC-750, CoFe/NC-800 and CoFe/NC-850.

Figure S6. XRD patterns of CoFe/NC-700, CoFe/NC-750, CoFe/NC-800 and

CoFe/NC-850.

Figure S7. Tafel slope for CoFe/NC-700, CoFe/NC-750, CoFe/NC-800 and

CoFe/NC-850.

Figure S8. Stability result for CoFe/NC-750.

Figure S9. (a-b) SEM imagines and (c-d) BET results of Co/NC-750 and Fe/NC-750.

Figure S10. Tafel slope for CoFe/NC-750, Co/NC-750 and Fe/NC-750.

Figure S11. DFT calculation results (a) the reaction scheme with the intermediates in the ORR process on CoFe-dual atoms/NC, (b) the reaction scheme with the intermediates in the ORR process on CoFe/NC.

Section S4 supplementary Table

Table S1. Comparisons of the electrocatalytic activities of the reported materials in 0.1 M KOH.

Catalyst	E _{onset} (V)	E _{1/2} (V)	Tafel (mV/d	J _L (mA	$ m J_K$ at 0.85 $ m V_{RHE}$	Reference
			ec)	cm ⁻²)	(mA cm ⁻²	2)
CoFe/NC-750	1.02	0.87	83	5.69	8.76	This work
SA- CoCu@Cu/CoNP	0.98	0.88	59.9	N/A	N/A	Adv. Energy Mater., 2021, 11, 2100303
Co ₂ P/NP-C	~0.9	0.81	62.13	4.54	N/A	Composites, Part B, 2022,23 ,109589
Co-NP/MNCF	N/A	0.836	51.9	5.9	N/A	Chem. Eur. J., 2023,29, e202204034
Fe ₃ N/Fe _{NP} -N-C- 3.3%	N/A	0.867	63.9	6.24	N/A	Carbon, 2023, 214, 118333
Fe ₃ C@NC/rGO 100NP	0.95	0.86	N/A	N/A	N/A	J. Mater. Res. Technol., 2022, 21, 1307- 1315
Co-N-C/CNF	N/A	0.859	58	N/A	N/A	Nano Res, 2022, 16, 545-554
Fe–Nx–CNFs	N/A	0.875	88	6.08	24.5(at 0.8V)	Mater. Chem. Front, 2022, 6, 3213-3224
FeNb ₂ O ₆ /NICC	1.09	0.882	87.1	6.0	N/A	J Colloid Interf Sci, 2024, 661, 102-112
CNT@ZnCo/NSC	0.98	0.83	83.2	~5	N/A	Int. J. Hydrogen Energy, 2024, 51, 1229-1241
CV-FeP/NPCNT- 30	1.142	0.92	100	5.89	N/A	Inorg. Chem. Front., 2024, DOI: 10.1039/D4QI00182F
FeNC-20	0.98	0.889	62.1	~6	4.5	Chem. Eng. J.,2023,474,145464
Fe/FexC@Fe-N- C-900	1.01	0.91	44.8	5.72	~20	Chem. Eng. J., 2023, 453, 139820