Research on the energy storage performance of laminated composite based on multidimensional co-design in a broad temperature region

Yipeng Tan^{a,c,1}, Jiayu Deng^{a,1}, Hang Gao^{a,c}, Ziwen Feng^{a,c}, Linfei Lu^{a,b,c}, Jiheng

Wang^a, Zhongbin Pan^d, Lingmin Yao^{a,b,c,*}, Qinglin Deng^{a,c,*}.

^a School of Physics and Materials Science, Guangzhou University, Guangzhou 510006,

P. R. China

^b Joint Institute of Guangzhou University & Institute of Corrosion Science and Technology, Guangzhou University, Guangzhou 510275, China

^cResearch Center for Advanced Information Materials, Huangpu Research & Graduate School of Guangzhou University, Guangzhou 510275, China

^d School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.

¹ These authors contributed equally to this work and should be considered cofirst authors

* Corresponding authors: Lingminyao@gzhu.edu.cn (Lingmin Yao), qldeng@gzhu.edu.cn (Qinglin Deng)

Fig.S1 SEM result of (A-T-A)/PI composite cross section.

Fig.S2 (a, b) SEM images of the TiO_2/PI composite surface. (c, d) SEM images of the Al_2O_3/PI composite surface.

Fig. S3 TGA result of 7(A-T-A)/PI and pure PI.

Fig. S4 The E_b and β of the composite films at (a) 25 °C, (b) 100 °C, (c) 150 °C, and (d) 200 °C.

Fig. S5 (a) D–E loops and (b) energy storage performance at 25 °C. (c) D–E loops and (d) energy storage performance at 100 °C. (e) D–E loops and (f) energy storage performance at 150 °C. (g) D–E loops and (h) energy storage performance at 200 °C.