Supplementary information

Bionic Nanotheranostic for Multimodal Imaging-Guided NIR-II-

Photothermal Cancer Therapy

Meng Zhang^{1, 2†}, Yuxuan Zhang^{1, 3, 4†}, Lifeng Hang^{2†}, Tao Zhang⁵, Chuangcai Luo^{1, 4},

Wuming Li², Yiqiang Sun⁶, Hua Wen², Yiyu Chen², Guihua Jiang^{1, 2*} and Xiaofen Ma^{2*}

¹ The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510282, China.

² The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou 510317, China

³ Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.

⁴ The National Key Clinical Specialty, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.

⁵ School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.

⁶ School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China

[†] Contributed equally

* Corresponding author

Fig. S1. TEM image of gold decahedron (scale bar: 20 nm).

Fig. S2. TEM image of Au NBP (scale bar: 500 nm).

Fig. S3. TEM image of $Au@MnO_2$ (scale bar: 50 nm).

Fig. S4. Digital image of Au NBP (left), Au@MnO₂ (middle) and Au@MnO₂@PM (right).

Fig. S5. Calculation of photothermal conversion efficiency (η) of AMP.

Calculation of the Photothermal Conversion Efficiency.

Following Roper's report (J. Phys. Chem. C 2007, 111, 3636), the total energy balance for the system can be expressed by Eq. 1:

$$\Sigma_i m_i C_{p,i} \frac{dT}{dt} = Q_{NC} + Q_{Dis} - Q_{surr} \tag{1}$$

Where m and C_p are the mass and heat capacity of water, respectively, T is the solution temperature, Q_{NC} is the energy inputted by NCs, Q_{Dis} is the baseline energy inputted by the sample cell, and Q_{surr} is heat conduction away from the system surface by air. The laser-induced source term, represents heat dissipated by electron-phonon relaxation

of the plasmons on the AMP surface under the irradiation of 1064 nm laser:

$$Q_{NC} = I(1 - A^{-1064})\eta \tag{2}$$

Where I is incident laser power, η is the conversion efficiency from incident laser energy to thermal energy, and A₁₀₆₄ is the absorbance of the AMP at wavelength of 1064 nm. In addition, source term, Q_{Dis}, expresses heat dissipated from light absorbed by the quartz sample cell itself, and it was measured independently to be 113.75 mW using a quartz cuvette cell containing pure water without any AMP. Q_{surr} is linear with temperature for the outgoing thermal energy, as given by Eq. 3

$$Q_{surr} = hS(T - T_{surr}) \tag{3}$$

Where h is heat transfer coefficient, S is the surface area of the container, and T_{Surr} is ambient temperature of the surroundings.

Once the laser power is defined, the heat input $(Q_{NC} + Q_{Dis})$ will be finite. Since the heat output (Q_{Surr}) is increased along with the increase of the temperature according to the Eq. 3, the system temperature will rise to a maximum when the heat input is equal to heat output:

$$Q_{NC} + Q_{Dis} = Q_{surr - max} = hS(T_{max} - T_{surr})$$
(4)

Where the Q_{surr-max} is heat conduction away from the system surface by air when the

sample cell reaches the equilibrium temperature, and T_{max} is the equilibrium temperature. The 1064 nm laser heat conversion efficiency (η) can be determined by substituting Eq. 2 for Q_{NC} into Eq. 4 and rearranging to get

$$\eta = \frac{hS(T_{max} - T_{surr}) - Q_{Dis}}{I(1 - 10^{-A_{1064}})}$$
(5)

Where Q_{Dis} was measured independently to be 113.75 mW, the (T_{max} - T_{Surr}) was 24.4 °C according to Figure 1G and 1H, I is 785 mW, A_{1064} is the absorbance (1) of AMP at 1064 nm (Figure 1F). Thus, only the hS remains unknown for calculating η .

In order to get the hS, a dimensionless driving force temperature, θ is introduced using the maximum system temperature, T_{max}

$$\theta = \frac{T - T_{surr}}{T_{max} - T_{surr}} \tag{6}$$

and a sample system time constant τ_s ,

$$\tau_s = \frac{\Sigma_i m_i C_{p,i}}{hS} \tag{7}$$

which is substituted into Eq. 1 and rearranged to yield

$$\frac{d\theta}{dt} = \frac{1}{\tau_s} \left[\frac{Q_{NC} + Q_{Dis}}{hS(T_{max} - T_{surr})} - \theta \right]$$
(8)

At the cooling stage of the aqueous dispersion of the AMP, the light source was shut off,

the Q_{NC} + Q_{Dis} = 0, reducing the Eq. 9

$$dt = -\tau_s \frac{d\theta}{\theta} \tag{9}$$

and integrating, giving the expression

$$\tau = -\tau_s ln\theta \tag{10}$$

finally, find the value of photothermal conversion efficiency (η)

$$\eta = \frac{hS(T_{max} - T_{surr}) - Q_{Dis}}{I(1 - 10^{-A_{1064}})} = \frac{(20.16 \times 24.4 \ mW - 113.7 \ mW)}{(785 \ mW \times (1 - 10^{-1.0804}))} = 52.07\%$$

Fig. S6. Optical microscopy images were taken 24 hours after the addition of PBS (left)

and AMP (right) to A549 cell culture medium. Scale bar: 100 μm

Fig. S7. Low magnification (left) and high magnification (right) images of AMP uptake by

A549 cells obtained by transmission electron microscopy. Scale bar: 5 µm.

Fig. S8. Cell viability of A549 cells and BEAS-2B cells after co-incubation with various concentrations of AMP for 48 h.

Fig. S9. Corresponding infrared thermal images (1064 nm laser doses: 1.0 W cm⁻²)

Fig. S10. CT images of different concentrations of AMP at 120kV (left) and corresponding CT value (right).

Fig. S11. The bioaccumulation of Au in tumor tissue in PBS ,AM and AMP groups. *P < 0.05.

Fig. S12. (A) Photograph of the RBC solution incubated with 100ug mL⁻¹ of AM or AMP. The H₂O group and PBS group were used as positive and negative control group, respectively. (B) Absorbance at 540 nm of the supernatants of different groups solution. ****P < 0.0001.

Photothermal agents	PTCE	Photothermal agents	PTCE
AMPs (this work)	0.520	Ti ₃ C ₂ /CA ₄ @PLEL	0.414
		nanohydrogel ¹	
Au/Ag NRs ²	0.288	Au-Au nanocoral ³	0.672
Au NPL@TiO ₂ ⁴	0.420	anti-STR-CO-GNSs⁵	0.319
Au@MOF-DOX ⁶	0.302	PLNP-Bi ₂ S ₃ ⁷	0.44
Au NSs ⁸	0.130	TA-Si-Au ⁹	0.241

Table S1. Photothermal performance of recently reported photothermal agents employed in NIR-II window.

PTCE, photothermal conversion efficiency.

1 Tao, N. *et al.* Minimally Invasive Antitumor Therapy Using Biodegradable Nanocomposite Micellar Hydrogel with Functionalities of NIR-II Photothermal Ablation and Vascular Disruption. *ACS Appl Bio Mater* **3**, 4531-4542, doi:10.1021/acsabm.0c00465 (2020).

2 Mei, Z. *et al.* Activatable NIR-II photoacoustic imaging and photochemical synergistic therapy of MRSA infections using miniature Au/Ag nanorods. *Biomaterials* **251**, 120092, doi:10.1016/j.biomaterials.2020.120092 (2020).

3 Jia, J. *et al.* Fine - Tuning the Homometallic Interface of Au - on - Au Nanorods and Their Photothermal Therapy in the NIR - II Window. *Angewandte Chemie International Edition* **59**, 14443-14448, doi:10.1002/anie.202000474 (2020).

4 Gao, F. *et al.* Titania-coated 2D gold nanoplates as nanoagents for synergistic photothermal/sonodynamic therapy in the second near-infrared window. *Nanoscale* **11**, 2374-2384, doi:10.1039/c8nr07188h (2019).

5 Manivasagan, P. *et al.* Antibody-conjugated and streptomycin-chitosan oligosaccharidemodified gold nanoshells for synergistic chemo-photothermal therapy of drug-resistant bacterial infection. *J Adv Res* **48**, 87-104, doi:10.1016/j.jare.2022.08.009 (2023).

6 Deng, X. *et al.* Yolk–Shell Structured Au Nanostar@Metal–Organic Framework for Synergistic Chemo-photothermal Therapy in the Second Near-Infrared Window. *Nano Letters* **19**, 6772-6780, doi:10.1021/acs.nanolett.9b01716 (2019).

7 Meng, Y. *et al.* Photothermal conversion performance and acid-induced aggregation of PLNP-Bi(2)S(3) composite nanoplatforms. *Dalton Trans* **51**, 5285-5295, doi:10.1039/d1dt04215g (2022).

8 Song, C. *et al.* Gold nanostars for cancer cell-targeted SERS-imaging and NIR lighttriggered plasmonic photothermal therapy (PPTT) in the first and second biological windows. *Journal of Materials Chemistry B* **7**, 2001-2008, doi:10.1039/c9tb00061e (2019).

Sun, L. N. *et al.* Silicon nanowires decorated with gold nanoparticles via in situ reduction for photoacoustic imaging-guided photothermal cancer therapy. *Journal of Materials Chemistry B* **7**, 4393-4401, doi:10.1039/c9tb00147f (2019).