Supplementary Information

The Reversible Piezochromic Luminescence Behavior of Carbon Dots under a Cycle of Loading/Unloading Pressure

Lele Liu,^a Menghui Ma,^a Lei Jiang,^a Zijian Li,^b Vladimir Yu. Osipov,^{a,c} Ting Geng,^d Guanjun Xiao^{d*} and Hong Bi^{b*}

^aSchool of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, China.

^bSchool of Materials Science and Engineering, Anhui University, Hefei, 230601, China. ^cInternational Research and Educational Center for Physics of Nanostructures, ITMO

University, 197101 St. Petersburg, Russia.

^dState Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China

1.Experimential details

1.1 Materials. All chemicals used are commercially available without further treatment. D-Aspartic acid (98%), ethylenediamine and commercial ethanol (99.7%) were obtained from local supplies and used as received. All water used during the experiment was ultrapure water from the microporous system (GZY-P10-B).

1.2 Synthesis of H-CDs and M-CDs. H-CDs sample was prepared by a hydrothermal method with aspartic acid and ethylenediamine as raw materials. Typically, 1.8 g of aspartic acid and 2 mL of ethylenediamine were added to ultrapure water, sealed in a Teflon-lined autoclave and then treated in the autoclave at 200 °C for 8 h. The powder sample of yellow color was thereafter collected and filtered after autoclave cooling down to room temperature. Subsequently, the filtrate was dialyzed using a dialysis membrane (MWCO 500-1000, Solarbio) for three days and then freezedried to obtain black powder. Finally, H-CDs powder was collected for further investigation. In its turn the M-CDs sample was synthesized by microwave-assisted thermal decomposition method. Similarly, 1.8 g of aspartic acid and 2 mL of ethylenediamine were dissolved in 10 mL ultrapure water, stirred vigorously until the solution became clear and transparent, and then the obtained solution was heated in a 500 W microwave oven at 100°C for 5 min. After a similar purification process to the above-mentioned one including filtration, dialysis and freeze-drying, a certain amount of M-CDs powder was collected for further structural, elemental and optical investigations.

1.3 Characterization. The sample's morphology and structure were examined by using transmission electron microscopy (TEM, JEM-2100, JEOL, Tokyo, Japan). Powder X-ray diffraction (XRD) analyses were carried out on SmartLab 9KW (Rigaku, Japan) with Cu Kα radiation (wavelength 1.5418 Å). A fluorescence spectrophotometer (F-4500, Hitachi, Japan) and a UV-1800PC spectrophotometer were used to study PL behavior and ultraviolet-visible (UV-vis) absorbance (Shimadzu, Japan) of samples, respectively. A calibrated integrating sphere using a HORIBA FLSP920 system (Horiba, Japan) was used to assess the absolute fluorescence quantum yield (QY). A Thermo

Nicolet NEXUS-870 ESP FT-IR/FT-NIR spectrometer (SpectraLab Scientific Inc.) was used to collect Fourier-transform infrared (FT-IR) absorption spectra. Near Edge X-ray Absorption Fine Structure (NEXAFS) analyses were carried out at the Catalysis and Surface Science Endstation at the BL11U beamline in the National Synchrotron Radiation Laboratory (NSRL) in Hefei, China. X-ray photoelectron spectroscopy (XPS) studies were performed on a commercial spectrophotometer (ESCALAB 250, Thermo Fisher Scientific, USA). Raman spectra were recorded using a laser confocal micro-Raman spectroscopy (InVia-Reflex, Renishaw, London, Britain).

1.4 Piezochromic luminescence test of H-CDs and M-CDs. In the experiment, a T301 steel gasket was pre-indented to 45 µm in thickness by DAC apparatus with a platen diameter of 400 µm. After removing the gasket from the press, a hole of approximately 130 µm in diameter was drilled in the pit using a laser drilling machine. Subsequently, ultrasonication was performed on the gasket with the holes drilled to remove any impurities. Under a microscope, the gasket with a hole was repositioned to its original location based on the markings made during pre-pressing, ensuring perfect alignment with the lower diamond platen. At this time, the lower diamond platen and stainless-steel sheet formed an open sample chamber. The previous work can effectively prevent leakage after the pressure transfer medium is introduced later. Using a sharpened needle sanded with sandpaper, the sample and ruby were carefully placed into the pit formed by the lower diamond platen and gasket under a microscope. An appropriate amount of silicone oil was drawn up using a capillary tube and dropped into the sample chamber, which was quickly sealed with the upper diamond platen, completing the sample loading process. In high pressure experiment, silicone oil, a colorless and transparent liquid, provided hydrostatic pressure for H-CDs and M-CDs under high pressure without any detectable effect on their behavior. All of the measurements were performed at room temperature. A brief schematic diagram of the pressure device is shown in Fig. S1.

2. Figures S1-S11 and Tables S1-S3

Fig. S1 Schematic diagram and physical image of the used high-pressure device.

Fig. S2 (a) HRTEM image and (b) the FFT pattern of H-CDs before compression. (c) HRTEM image and (d) the FFT pattern of M-CDs before compression.

Fig. S3 FT-IR transmission spectra of H-CDs and M-CDs. The plateau in each spectrum in the region of 1900-2000 cm⁻¹ corresponds to maximum transmission ($\leq 100\%$) and almost zero absorption. The spectra are shifted along the vertical axis for easy reading.

Fig. S4 High-resolution XPS O1s spectra of (a) H-CDs and (b) M-CDs.

Fig. S5 The NEXAFS spectra at the (a) C *K-edge*, (b) N *K-edge* and (c) O *K-edge* of H-CDs and M-CDs.

Fig. S6 Absolute fluorescence quantum yields of (a) H-CDs and (b) M-CDs in aqueous solution.

Fig. S7 UV-Vis absorption spectra of (a) H-CDs and (b) M-CDs in the Ethanol/H₂O mixtures with varying volume ratios ($f_{\text{ethanol}} = 0 \sim 95\%$).

Fig. S8 PL emission spectra of (a) H-CDs and (b) M-CDs in the Ethanol/H₂O mixtures with varying volume ratios ($f_{\text{ethanol}} = 0 \sim 95\%$). Normalized PL emission spectra of (c) H-CDs and (d) M-CDs in the Ethanol/H₂O mixtures.

Fig. S9 UV-vis absorption and PL spectra of (a) H-CDs and (b) M-CDs samples in solid-state.

Fig. S10 PL emission (a) intensity and (b) wavelength variations of H-CDs in the cycle of loading/unloading pressure. PL emission (c) intensity and (d) wavelength variations of M-CDs in the cycle of loading/unloading pressure.

Fig. S11 Photographs of fluorescence changes of (a) H-CDs and (b) M-CDs during loading and unloading pressure.

Sample	C=C	C-C	C-O/C-N	C=O	
H-CDs	18.7	29.0	26.8	25.5	
M-CDs	32.2	19.8	18.1	29.9	

Table S1 Carbon bonding composition ratio determined from the C 1s XPS of the H-CDs and M-CDs.

Table S2 Nitrogen bonding composition ratio determined from the N 1s XPS of the H-CDs and M-CDs.

Sample	Pyridinic-N	Pyrrolic-N	Graphitic-N	Amino-N
H-CDs	34.7	35.9	17.1	11.3
M-CDs	19.4	47.4	20.3	12.9

Table S3 Oxygen bonding composition ratio determined from the O 1s XPS of the H-CDs and M-CDs.

Sample	C=0	C-0
H-CDs	67.7	32.3
M-CDs	80.6	19.4