Supporting Information

Au₅Ag₁₂(SR)₉(dppf)₄ alloy nanocluster: Structural determination, optical property and photothermal effect investigation

Jiawei Wang,^a Along Ma,^{a,b} Yonggang Ren,^a Xuekairui Shen,^a Yifei Wang,^a Caixia Song *^a and Shuxin Wang *^{a,b}

^aCollege of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.

^bShandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular

Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.

*Corresponding author, e-mail: <u>songcaixia@qust.edu.cn</u> (Caixia Song); shuxin wang@qust.edu.cn (Shuxin Wang)

Table of Contents

Section 1. Supporting Figures

Figure S1. The optical microscopic image of the single crystals of the Au_5Ag_{12} , Au_5Ag_{11} , Au_4Ag_{13} and Au_7Ag_8 nanoclusters.

Figure S2. The UV-vis absorbance spectra of the Au₅Ag₁₁, Au₄Ag₁₃ and Au₇Ag₈ nanoclusters in CH₂Cl₂.

Figure S3. The overall structure of the Au₅Ag₁₂, Au₅Ag₁₁, Au₄Ag₁₃ and Au₇Ag₈ nanoclusters.

Figure S4. UV-vis absorption spectrum (photon energy scale) of the Au_5Ag_{12} nanocluster in CH_2Cl_2 .

Figure S5. XPS spectra of the Au_5Ag_{12} nanocluster.

Figure S6. SEM image and corresponding elemental mapping images of Au₅Ag₁₂ nanocluster.

Figure S7. Monitoring the stability of Au₅Ag₁₂ nanocluster.

Figure S8. The unit cell the Au₅Ag₁₂, Au₅Ag₁₁, Au₄Ag₁₃ and Au₇Ag₈ nanoclusters.

Figure S9. Packing mode of the Au₅Ag₁₂ in the crystal.

Figure S10. Packing mode of the Au₅Ag₁₁ in the crystal.

Figure S11. Packing mode of the Au₇Ag₈ in the crystal.

Figure S12. Packing mode of the Au₄Ag₁₃ in the crystal.

Figure S13. UV-vis absorption spectra (photon energy scale) of the Au₅Ag₁₂, Au₅Ag₁₁,

Au₄Ag₁₃ and Au₇Ag₈ nanoclusters in CH₂Cl₂.

Figure S14. Photoluminescence spectra of Au_5Ag_{12} nanocluster in the CH_2Cl_2 solution.

Figure S15. Photoluminescence spectra of Au₅Ag₁₂ nanocluster in the solid state.

Figure S16. Temperature-dependent PL and UV-vis absorption spectra of Au₅Ag₁₂, Au₅Ag₁₁,

Au₄Ag₁₃ and Au₇Ag₈ nanoclusters.

Figure S17. Temperature-dependent PL spectra of Au_5Ag_{12} nanocluster from 1100 nm to 2500 nm in 2-MeTHF from 300 K to 80 K.

Figure S18. Simplified Jablonski diagram illustrating photophysical processes of Au_5Ag_{12} nanocluster.

Figure S19. Time dependent images of Au_5Ag_{12} solutions of different concentrations (0.1 mM, 0.05 mM, and 0.01 mM) upon laser irradiation, followed by a cooling period.

Figure S20. The photothermal stability of Au_5Ag_{12} nanoclusters at different concentrations was monitored by UV-vis spectroscopy.

Figure S21. Temperature change of blank CHCl₃ solvent.

Figure S22. Absorption spectra of Au₅Ag₁₂, Au₅Ag₁₁, Au₇Ag₈ nanoclusters.

Figure S23. Fluorescence decay profile of Au₄Ag₁₃, Au₇Ag₈ and Au₅Ag₁₁ nanoclusters.

Figure S24. The time-dependent temperature of the four AuAg alloy nanoclusters solutions (0.1 mM) during laser irradiation at 808 nm with different power.

Figure S25. The time-dependent temperature of the four AuAg alloy nanoclusters solutions (0.1 mM) during laser irradiation at 1.4 W cm⁻² with different wavelengths.

Figure S26. Photothermal cycling measurement and corresponding UV-vis spectra of Au₅Ag₁₂ solutions (0.1 mM, 0.05 mM, 0.01 mM).

Figure S27. Photothermal cycling measurement and corresponding UV-vis spectra of Au₅Ag₁₁, Au₄Ag₁₃ and Au₇Ag₈ nanoclusters in CHCl₃.

Figure S28. Monitoring the stability of Au_5Ag_{12} , Au_5Ag_{11} , Au_4Ag_{13} and Au_7Ag_8 nanoclusters in CHCl₃ within 14 days.

Section 2. Supporting Table

Table S1. The crystal structure parameters for Au₅Ag₁₂(SR)₉(dppf)₄.

Table S2. The corresponding PLQY, τ , k_R and k_{NR} of Au₄Ag₁₃, Au₇Ag₈, and Au₅Ag₁₁ nanoclusters.

Section 1. Supporting Figures

Figure S1. The optical microscopic image of the single crystals of the Au_5Ag_{12} , Au_5Ag_{11} , Au_4Ag_{13} and Au_7Ag_8 nanoclusters. (a) Au_5Ag_{12} ; (b) Au_5Ag_{11} ; (c) Au_4Ag_{13} ; (d) Au_7Ag_8 .

Figure S2. The UV-vis absorbance spectra of the Au_5Ag_{11} , Au_4Ag_{13} and Au_7Ag_8 nanoclusters in CH₂Cl₂ (Insets are the photos of three nanoclusters in CH₂Cl₂). (a) Au_5Ag_{11} ; (b) Au_4Ag_{13} ; (c) Au_7Ag_8 .

Figure S3. The overall structure of the Au_5Ag_{12} , Au_5Ag_{11} , Au_4Ag_{13} and Au_7Ag_8 nanoclusters. (a) Au_5Ag_{12} ; (b) Au_5Ag_{11} ; (b) Au_4Ag_{13} ; (d) Au_7Ag_8 . Color labels: orange = Au; light blue = Ag; red = Fe; yellow = S; magenta = P; pink = O; grey = C; white = H.

Figure S4. UV-vis absorption spectrum (photon energy scale) of the Au_5Ag_{12} nanocluster in CH_2Cl_2 . The experimental energy gap of the Au_5Ag_{12} nanocluster in CH_2Cl_2 was determined as ~1.55 eV.

Figure S5. XPS spectra of the Au₅Ag₁₂ nanocluster. (a)Au 4f; (b) Ag 3d; (c) Fe 2p.

Figure S6. SEM image and corresponding elemental mapping images of Au₅Ag₁₂ nanocluster. (a) SEM image of a small deformed single crystal; (b)-(h) Elemental mapping images of Au, Ag, Fe, S, P, F, and C, respectively.

Figure S7. Monitoring the stability of Au_5Ag_{12} nanocluster. (a) Time-dependent UV-vis spectra of Au_5Ag_{12} in the CH₂Cl₂ solution; (b) Time-dependent UV-vis spectra of Au_5Ag_{12} in the solid state.

Figure S8. The unit cell the Au₅Ag₁₂, Au₅Ag₁₁, Au₄Ag₁₃ and Au₇Ag₈ nanoclusters. (a) Au₅Ag₁₂; (b) Au₅Ag₁₁; (b) Au₄Ag₁₃; (d) Au₇Ag₈. Color labels: orange = Au; light blue = Ag; red = Fe; yellow = S; magenta = P; pink = O; grey = C; white = H. All H atoms are omitted for clarity.

Figure S9. Packing mode of the Au_5Ag_{12} in the crystal shown. (a) Along the a axis; (b) Along the b axis; (c) Along the c axis. All H atoms are omitted for clarity. The cluster molecules arranged in different directions show in different colors.

Figure S10. Packing mode of the Au_5Ag_{11} in the crystal shown. (a) Along the a axis; (b) Along the b axis; (c) Along the c axis. All H atoms are omitted for clarity. The cluster molecules arranged in different directions show in different colors.

Figure S11. Packing mode of the Au_7Ag_8 in the crystal shown. (a) Along the a axis; (b) Along the b axis; (c) Along the c axis. All H atoms are omitted for clarity. The cluster molecules arranged in different directions show in different colors.

Figure S12. Packing mode of the Au_4Ag_{13} in the crystal shown. (a) Along the a axis; (b) Along the b axis; (c) Along the c axis. All H atoms are omitted for clarity. The cluster molecules arranged in different directions show in different colors.

Figure S13. UV-vis absorption spectra (photon energy scale) of the Au₅Ag₁₂, Au₅Ag₁₁, Au₄Ag₁₃ and Au₇Ag₈ nanoclusters in CH₂Cl₂. (a) Au₅Ag₁₂; (b) Au₅Ag₁₁; (c) Au₄Ag₁₃; (d) Au₇Ag₈. The experimental energy gap of the Au₅Ag₁₂, Au₅Ag₁₁, Au₄Ag₁₃ and Au₇Ag₈ nanoclusters in CH₂Cl₂ was determined as ~1.55 eV, 1.48 eV, 1.85 eV, and 1.66 eV, respectively.

Figure S14. Photoluminescence spectra of Au_5Ag_{12} nanocluster in the CH₂Cl₂ solution at 300 K. (a) in 500-1100 nm range; (b) in 1100-2500 nm range.

Figure S15. Photoluminescence spectra of Au_5Ag_{12} nanocluster in the solid state at 300 K. (a) in 500-1100 nm range; (b) in 1100-2500 nm range.

Figure S16. Temperature-dependent PL and UV-vis absorption spectra of Au_5Ag_{12} , Au_5Ag_{11} and Au_4Ag_{13} nanoclusters in 2-MeTHF, and temperature-dependent PL and UV-vis absorption spectra of Au_7Ag_8 nanocluster in acetone (from 300 K to 80 K, monitored per 10 K, $\lambda_{ex} = 405$ nm). (a) Au_5Ag_{12} ; (b) Au_5Ag_{11} ; (c) Au_4Ag_{13} ; (d) Au_7Ag_8 .

Figure S17. Temperature-dependent PL spectra of Au_5Ag_{12} nanocluster from 1100 nm to 2500 nm in 2-MeTHF from 300 K to 80 K ($\lambda_{ex} = 405$ nm).

Figure S18. Simplified Jablonski diagram illustrating photophysical processes of Au_5Ag_{12} nanocluster. PL: photoluminescence.

Figure S19. Time dependent images of Au_5Ag_{12} solutions of different concentrations (0.1 mM, 0.05 mM, and 0.01 mM) upon laser irradiation, followed by a cooling period (arrows indicate the time to stop irradiation).

Figure S20. The photothermal stability of Au_5Ag_{12} nanoclusters at different concentrations was monitored by UV-vis spectroscopy. (a) 0.01 mM; (b) 0.05 mM; (c) 0.1 mM.

Figure S21. Temperature change of blank CHCl₃ solvent. Laser irradiation: 808 nm, 1.4 W cm⁻².

Figure S22. Absorption spectra of (a) Au_5Ag_{12} ; (b) Au_5Ag_{11} ; (c) Au_7Ag_8 and (d) Au_4Ag_{13} dissolved in CHCl₃. Molar absorption coefficient ε is calculated by Beer's law: $A = \varepsilon \cdot c \cdot l$ (A is absorbance, c is the concentration of the solution (0.1 M), and l is the light length, i.e., 1 cm).

Figure S23. Fluorescence decay profile of Au_4Ag_{13} , Au_7Ag_8 and Au_5Ag_{11} nanoclusters. (a) Au_4Ag_{13} ; (b) Au_7Ag_8 ; (c) Au_5Ag_{11} .

Figure S24. The time-dependent temperature of the four AuAg alloy nanoclusters solutions (0.1 mM) during laser irradiation at 808 nm with different power (0.9, 1.4, and 2.1 W cm⁻²). (a) **Au₅Ag₁₂**; (b) **Au₅Ag₁₁**; (c) **Au₄Ag₁₃**; (d) **Au₇Ag₈**. Solvent: CHCl₃.

Figure S25. The time-dependent temperature of the four AuAg alloy nanoclusters solutions (0.1 mM) during laser irradiation at 1.4 W cm⁻² with different wavelengths (808, 660, and 532 nm). (a) Au₅Ag₁₂; (b) Au₅Ag₁₁; (c) Au₄Ag₁₃; (d) Au₇Ag₈. Solvent: CHCl₃.

Figure S26. (a) Photothermal cycling measurement of Au_5Ag_{12} solutions (0.1 mM, red; 0.05 mM, cyan; 0.01 mM, black); (b) Corresponding UV-vis spectra of Au_5Ag_{12} (0.1 mM) after three cycles. Solvent: CHCl₃. Laser irradiation: 808 nm, 1.4 W cm⁻².

Figure S27. Photothermal cycling measurement and corresponding UV-vis spectra of Au₅Ag₁₁, Au₄Ag₁₃ and Au₇Ag₈ nanoclusters in CHCl₃. (a) and (b) Au₅Ag₁₁; (c) and (d) Au₄Ag₁₃; (e) and (f) Au₇Ag₈.

Figure S28. Monitoring the stability of Au_5Ag_{12} , Au_5Ag_{11} , Au_4Ag_{13} and Au_7Ag_8 nanoclusters in CHCl₃ within 14 days. (a) Au_5Ag_{12} ; (b) Au_5Ag_{11} ; (c) Au_4Ag_{13} ; (d) Au_7Ag_8 .

Section 2. Supporting Table

Empirical formula	$C_{208}H_{139}Ag_{12}Au_{5}F_{54}Fe_{4}P_{8}S_{9}$		
Formula weight	6703.16		
Temperature/K	150(2)		
Crystal system	triclinic		
Space group	$P\overline{1}$		
a/Å	21.5917(4)		
b/Å	23.5980(5)		
c/Å	26.7319(5)		
α/°	95.805(2)		
β/°	110.205(2)		
γ/°	97.054(2)		
Volume/Å ³	12533.9(5)		
Z	2		
$\rho_{calc}g/cm^3$	1.776		
µ/mm ⁻¹	4.259		
F(000)	6400.0		
Radiation	Mo Kα (λ = 0.71073)		
2@ range for data collection/°	3.806 to 61.744		
Index ranges	$-24 \le h \le 28, -29 \le k \le 33, -32 \le l \le 38$		
Reflections collected	141631		
Independent reflections	$60287 [R_{int} = 0.0664, R_{sigma} = 0.0999]$		
Data/restraints/parameters	60287/3346/2701		
Goodness-of-fit on F ²	1.093		
Final R indexes [I>=2σ (I)]	$R_1 = 0.0736, wR_2 = 0.1863$		
Final R indexes [all data]	$R_1 = 0.1116, wR_2 = 0.2037$		
Largest diff. peak/hole / e Å ⁻³	5.64/-3.93		

Table S1. The crystal structure parameters for Au₅Ag₁₂(SR)₉(dppf)₄.

Au ₇ Ag ₈ , and Au ₅ Ag ₁₁ nanoclusters.					
Nanocluster	QY (%)	τ (μs)	$k_{\mathrm{R}}(\mathrm{s}^{-1})$	$k_{\rm NR}$ (s ⁻¹)	
Au ₄ Ag ₁₃	0.19	0.51	3.73×10 ³	1.96×10 ⁶	
Au7Ag8	1.62	4.85	3.34×10 ³	2.02×10 ⁵	
Au ₅ Ag ₁₁	11.98	7.38	1.62×10 ⁴	1.19×10 ⁵	

Table S2. The corresponding photoluminescence quantum yields (PLQY), fluorescence lifetimes (τ), radiative rate constants (k_R) and non-radiative rate constants (k_{NR}) of Au₄Ag₁₃, Au₇Ag₈, and Au₅Ag₁₁ nanoclusters.