Supplementary Information

Doping effect on a two-electron silver nanocluster

Wei-Jung Yen,^a Jian-Hong Liao,^a Tzu-Hao Chiu,^a Jie-Ying Chen,^b Yuan Jang Chen,^b

Samia Kahlal,^c Jean-Yves Saillard*^c and C. W. Liu *^a

^a Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan

(Republic of China). Email: chenwei@gms.ndhu.edu.tw Homepage:

http://faculty.ndhu.edu.tw/~cwl/index.htm

^b Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205,

Taiwan (Republic of China)

^c Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France. Email: jean-

yves.saillard@univ-rennes.fr

Fig. S1 The experimental (top) and simulated isotope distribution pattern of $[Ag_{11}{S_{2P}(O^{i}Pr)_{2}}_{8}]$ in the ESI-MS of $Cu_{x}Ag_{11-x}$.

Fig. S2 The ${}^{31}P{}^{1}H$ NMR spectrum of Ag₁₁ (in CDCl₃).

Fig. S3 The ¹H NMR spectrum of Ag_{11} (in $CDCI_3$).

Fig. S5 The ¹H NMR spectrum of Cu_xAg_{11-x} (in CDCl₃).

Fig. S6 (a) The metal framework in Ag_{11} and (b) $[Cu_xAg_{10-x}(Se){Se_2P(O'Pr)_2}_8]$. (c)A side view of the metal framework in Ag_{11} and (d) $[Cu_xAg_{10-x}(Se){Se_2P(O'Pr)_2}_8]$.

Fig. S7 A schematic diagram of the replacement of Cu atoms in Cu_xAg_{11-x} .

Fig. S8 The TD-DFT-simulated spectra of Ag_{11} and the $Cu_xAg_{(11-x)}$ (x = 1-3) alloys considered in their configuration of lowest energy (see Figure 4).

Fig. S9 Ag 3d XPS spectrum of Ag₁₁.

Fig. S10 (a) Ag 3d and (b) Cu 2p XPS spectra of Cu_xAg_{11-x} .

Fig. S11 The photoluminescence decay curve of Ag_{11} in 2-MeTHF at RT.

Fig. S12 The photoluminescence decay curve of Ag₁₁ in 2-MeTHF at 77K.

Fig. S13 The photoluminescence decay curve of Cu_xAg_{11-x} in 2-MeTHF at RT.

Fig. S14 The photoluminescence decay curve of Cu_xAg_{11-x} in 2-MeTHF at 77K.

Fig. S15 (a) The photoluminescence quantum yield of Ag_{11} and (b) Cu_xAg_{11-x} in film state at ambient temperature.

Table S1 Selected b	ond lengths (Å)	in Ag ₁₀ and Ag ₁₁ .
---------------------	-----------------	--

	Tetrahedron	Tetrahedron	Tetrahedron	Tetrahedron	Tetrahedron	Tetrahedron	Tetrahedron	Tetrahedron
Compound	edge	edge	edge	edge	height	height	height	height
	yellow (Å)	green (Å)	cyan (Å)	magenta (Å)	yellow (Å)	green (Å)	cyan (Å)	magenta (Å)
	2.7985(13) 2.7848(14		2.8437(14)	2.9116(14)	2.283	2.276	2.334	2.353 [3]
	2.8369(13)	2.8369(13)	2.8549(12)	3.0570(13)	2.313	2.339	2.382	2.400
	2.8437(14)	2.8464(12)	2.9567(13)	3.0967(15)	2.344	2.343	2.402	2.688
	2.8464(12)	2.8549(12)	3.0290(13)	3.0984(14)	2.377	2.360	2.548	2.731
	2.8549(12)	2.8896(13)	3.0483(13)	3.1355(13)	avg. 2.329	avg. 2.330	avg. 2.417	avg. 2.543
	2.9567(13)	2.9192(13)	3.0557(13)	3.600(1)		_	2.347	
	avg. 2.8562(13)	avg. 2.8553(13)	avg. 2.9647(13)	avg. 3.150(1)			2.351	
			2.8549(12)	<u> </u>			2.418	
			2.8896(13)				2.530	
			2.9192(13)				avg. 2.412	1
			2.9565(13)				2.283	
			3.0193(14)				2.356	
			3.1315(15)				2.376	
			avg. 2.9618(13)				2.437	
Ag ₁₀			2.7985(13)				avg. 2.363	
			2.8366(13)				2.309	1
			2.8464(12)				2.340	
		2.9518(15)				2.389		
Ag _{cap} Ag _{tbp-ax}		2.9567(13)				2.577		
	Ag	ap	3.0984(14)				avg. 2.404	
Ag _{tbp} -eq Ag _{ext}		avg. 2.9147(13)				avg. 2.399 ^[2]		
		2.7848(14)						
		2.8464(12)						
A9 _{tbp-eq}	Ag _{tbp-eq} Ag _{tbp-eq}		2.9192(13)					
		2.9849(14)						
Ag _{cap}	Ag _{cap} Ag _{cap}		3.0685(14)					
- 000	Ag _{tbp-ax}		3.1355(13)					
1			avg. 2.9566(13)					
-			avg. 2.9495(13) ^[1]					
	2.7917(7)	2.7686(7)	2.7686(7)	3.0098(9)	2.291	2.277	2.268	2.289
	2.8017(7)	2.8326(7)	2.8407(7)	3.0758(8)	2.301	2.316	2.323	2.619 [3]
	2.8365(7)	2.8407(7)	3.0136(8)	3.3783(9)	2.351	2.351	2.699	2.970
	2.8407(7)	2.8453(7)	3.2026(8)	3.4723(8)	avg. 2.313	avg. 2.315	avg. 2.435	avg. 2.678
	2.9003(7)	2.9080(7)	3.2957(8)	3.9802(9)			2.303	2.375 ^[3]
	avg. 2.8339(7)	avg. 2.8386(7)	avg. 3.0049(8)	avg. 3.3555(9)			2.347	2.386
			2.8017(7)	2.9219(7)			2.379	2.718
			2.8407(7)	3.0787(7)			2.547	2.848
Ag11			2.9003(7)	3.1093(8)			avg. 2.394	avg. 2.582
811			2.9507(8)	3.2026(8)			2.280	avg. 2.630 ^[4]
			3.0514(8)	3.2170(7)			2.335	
			3.1093(8)	3.7852(9)			2.433	
			avg. 2.9424(8)	avg. 3.2191(8)			2.706	
			2.8326(7)	avg. 3.2873(8)			avg. 2.439	
			2.8453(7)				2.302	
			2.9080(7)				2.342	
			2.9155(7)				2.414	
			3.0758(8)				2.549	

Colored background represents the average bond distances. ^[1] The average bond length of all cyan tetrahedrons. ^[2] The average height of all cyan tetrahedrons. ^[3] Distances from Ag_{ext} to ΔAg_{tbp-eq} - Ag_{cap} - Ag_{cap} . ^[4] The average height of all magenta tetrahedrons. Red text represents the Ag...Ag distances are longer than their sum of vdW radii (3.44 Å).

Compound	$Ag_{11} \cdot 2(CH_2CI_2)$
CCDC no.	2287343
Chemical formula	$C_{51}H_{116}Ag_{11}CI_4F_3O_{19}P_8S_{17}$
Formula weight	3211.58
Wavelength, Å	0.71073
Crystal System	Monoclinic
Space group	P21/c
a, Å	21.1314(12)
b, Å	20.6403(11)
c, Å	25.9515(14)
α, deg.	90
β, deg.	110.450(2)
γ, deg.	90
V, Å ³	10605.6(10)
Z	4
Temperature, K	100(2)
ρ _{calcd} , g/cm ³	2.011
μ, mm ⁻¹	2.596
θ_{max} , deg.	25.00
Completeness, %	98.9
Reflection collected / unique	60351 /18458 [<i>R</i> (int) = 0.0413]
Restraints / parameters	402 / 1110
^a R1, ^b wR2 [I > 2σ(I)]	0.0426, 0.1023
^a <i>R</i> 1, ^b <i>wR</i> 2 (all data)	0.0576, 0.1128
GOF	1.053
Largest diff. peak and hole, e/Å ³	2.864 and -2.017

 Table S2
 Selected X-ray crystallographic data of Ag₁₁.

^a $R1 = \Sigma \mid \Box F_o \Box - \Box Fc \Box \mid /\Sigma \Box F_o \Box$. ^b $wR2 = \{\Sigma[w(F_o^2 - F_c^2)^2]/\Sigma[w(F_o^2)^2]\}^{1/2}$.

Measurement of Quantum Yield

The quantum yield of Ag_{11} and Cu_xAg_{11-x} was determined by a comparative method. Absolute values are calculated by using $[Ru(bpy)_3]^{2+}$ as the standard sample according to the following equation:^{S1,S2}

$$\Phi_{a} = \frac{\frac{F_{a}}{A_{a}} \times \eta_{a}^{2}}{\frac{F_{s}}{A_{s}} \times \eta_{s}^{2}} \times \Phi_{s}$$

Where the subscripts "s" and "a" denote standard and analyte, respectively. Φ is the emission quantum yield. F is the integrated emission intensity. A is the absorbance. η is the refractive index of the solvent. The quantum yield for Ag_{11} was determined by averaging results from three separate experiments, using $[Ru(bpy)_3]^{2+}$ in alcohol as a standard reference. The quantum yield for Cu_xAg_{11-x} was calculated based on an average from two experiments, with $[Ru(bpy)_3]^{2+}$ dissolved in water serving as the standard. To prepare the PMMA film, 2 mg of Ag_{11} (or 2 mg of Cu_xAg_{11-x}) was mixed with a PMMA solution in CH_2Cl_2 and stirred until evenly distributed. The mixture solution was then dropped onto a quartz template and left to dry, forming a film.

References:

- S1. G. A. Crosby and J. N. Demas, J. Am. Chem. Soc., 1970, 92, 7262–7270.
- S2. G. A. Crosby and J. N. Demas, J. Am. Chem. Soc., 1971, 93, 2841–2847.

	solvent	Absorbance (A)	Integrated emission intensity (F)	F/A (*10 ¹²)	Quantum Yield (Φ)	Average Quantum Yield (Φ)	Film Quantum Yield (Φ _{Film})
[Ru(bpy) ₃] ²⁺	Alcohol ^[a]	0.7076	1.570E+12	2.21			
[Ru(bpy) ₃] ²⁺	Alcohol ^[a]	0.7034	1.568E+12	2.229	0.089 ^{[b][c]}	0.089 ^{[b][c]}	
[Ru(bpy) ₃] ²⁺	Alcohol ^[a]	0.6828	1.247E+12	1.826			
Ag ₁₁	2-MeTHF	0.8156	2.81E+12	3.45	0.153 ^[c]		
Ag ₁₁	2-MeTHF	0.7885	2.814E+12	3.57	0.157 ^[c]	0.146 ^[c]	0.372 ^[d]
Ag ₁₁	2-MeTHF	0.8291	1.975E+12	1.826	0.129 ^[c]		
	solvent	Absorbance (A)	Integrated emission intensity (F)	F/A (*10 ⁸)	Quantum Yield (Φ)	Average Quantum Yield (Φ)	Film Quantum Yield (Φ _{Film})
[Ru(bpy) ₃] ²⁺	H ₂ O	0.0867	6.42E+8	74.09			
[Ru(bpy) ₃] ²⁺	H ₂ O	0.0854	6.04E+8	70.72	0.063	0.003	
Cu _x Ag _{11-x}	2-MeTHF	0.0645	8.12E+8	83.13	0.080 ^[c]		0.161 ^[d]
Cu _x Ag _{11-x}	2-MeTHF	0.0636	8.18E+8	78.34	0.075 ^[c]	0.078.0	

Table S3 Determination of photoluminescence quantum yield of Ag₁₁ and Cu_xAg_{11-x}.

^[a] ethanol-methanol (v/v = 4:1). ^[b] *J. Chem. Soc., Perkin Trans. 2,* 1984, 1293-1301. ^[c] Degas. ^[d] PLQY was determined with the complexes in plastic (PMMA film) through an integrating sphere on FLS920 spectrometer. ^[e] *Phys. Chem. Chem. Phys.,* 2009, **11**, 9850-9860.