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Ⅰ. The exact stationary solution of thin film model
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Ⅱ. Spherical core-shell model

Assuming that the nanoparticle is in the HS state and that the shell is made up of a 
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Finally, the number of molecules in the core ( ) and in the shell ( ) can be expressed as:𝑁𝑏 𝑁𝑠
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On the other hand, the relation between the volume of a single molecule and the total volume 
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      Considering the shell is made up of a monolayer of molecules (  in this case), the 𝑁𝑠 = 𝑁𝑎

total energy of the spherical system is written as:
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The exact stationary solution of the spherical model is found using eqn (24) à the main text, 

which brings out the equation set:
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Fig. S1. Calculated temperature dependence of the HS fraction (heating mode) in a 5 nm 

spherical particle of [Fe(pyrazine)][Ni(CN)4] in the case of (a)  and (b) 
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eye to follow the evolution the residual HS fraction and the equilibrium temperature, 

respectively, with increasing of .𝛾𝐻𝑆



Fig. S2: Calculated temperature dependence of the HS fraction (heating mode) in a 5 nm 

spherical particle of [Fe(pyrazine)][Ni(CN)4] in the case of   for different values 
𝛼 =

𝜎𝐿𝑆

𝜎𝐻𝑆
= 1.4

of  ranging from (a) +10 to +410  and (b) -410 to -10  with an increment of 𝜎𝐻𝑆  𝑚𝐽/𝑚2  𝑚𝐽/𝑚2

. The red curve represents the bulk material. Green and red arrows are guides for the 20 𝑚𝐽/𝑚2

eye to follow the evolution the residual LS fraction and the equilibrium temperature, 

respectively, with increasing of .𝜎𝐻𝑆



Fig. S3. Calculated temperature dependence of the total HS fraction (heating mode) for different 

particle radii of the compound [Fe(pyrazine)][Ni(CN)4].



Ⅲ. Molecular dynamics calculations

Since no surface energy data in the literature for SCO materials have been found, we 

employed molecular dynamics (MD) simulations to calculate the surface energy of 

[Fe(pyrazine)][Ni(CN)4] in the HS and LS spin states. The surface energy is related to the 

excess of potential energy per unit area in a system having free surfaces in comparison with its 

bulk counterpart. Accordingly, the slab method is used in the present MD simulation,1 where 

the potential energies of a bulk material, i.e. without surface and a finite-size system with free 

surfaces (or surface-vacuum interface) are needed to be calculated separately.

First, the [Fe(pyrazine)][Ni(CN)4] structure with 20×20×20 unit-cells is built in the LS  

state and the HS state, which corresponds to simulation box sizes of 140.26 × 140.26 × 135.52 

Å3 and 145.15 × 145.15 × 145.15 Å3, respectively, containing 128 000 atoms. Periodic boundary 

conditions are applied along the x, y and z directions to simulate the bulk material. 

Then, a thin film having two solid-vacuum interfaces constituted with equivalent pyrazine-

terminated surfaces at the top and at the bottom is created in the HS and LS states (see Fig. S4). 

The model system with free surfaces, containing 130 400 atoms, is composed with 20×20 unit-

cells in the x and y directions and 21 layers in the z direction. Periodic boundary conditions are 

applied along the x and y directions, while open boundary conditions are applied along the z 

direction to avoid self-interactions between the two surfaces. The surface energy ( ) is 𝐸𝑠𝑢𝑟

simply estimated as follow:1
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where S is the surface area after mechanical relaxation, Etot is the total energy of the model 

system with free surfaces. ni corresponds to the total number of atoms i (i=Ni, Fe, C and N) at 

the surface and   stands for the energy of a single i atom in the bulk material.𝐸𝑏𝑢𝑙𝑘 ‒ 𝑖

The present calculations are performed through the large-scale atomic/molecular massively 

parallel simulator package (LAMMPS) 2 with a recently constructed [Fe(pyrazine)][Ni(CN)4] 

force field.3 The temperature and pressure are controlled by the Nosé-Hoover method 4, 5 and a 

timestep of  fs is selected. Each modeled system has been fully relaxed at 300 K for 100 000 1

MD steps to reach equilibrium state under the isothermal-isobaric (NPT) ensemble. 



 

Fig. S4: Schematic representation of the [Fe(pyrazine)][Ni(CN)4] film structure with periodic 

boundary condition along the x and y-directions.
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