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S1.1. Physical characterization 

The Bruker Eco D8 ADVANCE X Powder X-ray diffractometer was used to investigate the 

structural properties of MnCo2O4-Ni3N.The diffractometer consists of a Ni filter that provides 

Cu K radiation (= 1.54056, 40 kV, and 25 mA) in the 2θ range of 10°-80° with a rise of 

0.00190/step. The morphological examination of the heterostructures is performed using a 

JEOL JSM-7600F (FESEM) scanning electron microscope SEM equipped with an energy-

dispersive X-ray diffractometer (Bruker). Transmission electron microscopy (TEM) JEOL-

2100 operating at 200 kV was used to analyse the length and breadth of the MnCo2O4-Ni3N, 

MnCo2O4 and Ni3N and MnCo2O4-NiOOH heterostructure. X-Ray photoelectron (XPS) 

spectroscopy was executed on a K-Alpha plus XPS system of Thermo Fisher Scientific 

instruments in an ultrahigh vacuum chamber (7x10-9torr) using Al-Kα radiation (1486.6 eV). 



S1.2. Electrochemical Analysis 

At a temperature of 25°C, all electrochemical measurements were performed on metroholm 

auto lab electrochemical workstation. A graphite electrode serves as a counter electrode, and 

a saturated Ag/AgCl electrode serves as a reference electrode in the traditional three-

electrode arrangement. All of the polarisation data was obtained in 1 M KOH at a scan rate of 

5 mV s-1. ERHE = EAg/AgCl+ 0.197 + 0.059×pH is the equation used to convert to a reversible 

hydrogen electrode. The Tafel slope was determined by plotting the polarisation curve again 

and fitting the linear portion of the Tafel plot to the Tafel equation (η = b log(j) + a). The 

elimination of Ohmic drop was used to correct the iRs, as stated by the equation ηcorrected = η – 

iRs, where Rs signifies the solution resistance. Electrochemical impedance spectroscopy 

(EIS) was carried out at a frequency range of 1 to 100000 Hz with an overpotential of 200 

mV. We employed chronoamperometry for the stability study. The double layer capacitance 

was determined using CV scans in a non-Faradaic potential range of as-prepared catalyst 

electrodes in 1 M KOH at a scan rate of 20 to 200 mV/s for the calculation of 

electrochemically active surface area (ECSA) . Half of the variations in current density (J = 

(Janodic-Jcathodic)) shown against scan rate at a potential of 1.16 V versus RHE fit to a linear 

regression that allows the measurement of double layer capacitance (Cdl). The faradic 

efficiency was calculated by dividing the experimental oxygen evolution by the theoretical 

oxygen evolution. 



Calculation of ECSA: 

The ECSAs of the samples have been determined based on the measured Cdl. The current 

observed in the non-Faradaic zone is a result of the charging of the double layer and exhibits 

a linear correlation with the active surface area. In general, the specific capacitance of a flat 

surface area measuring 1cm2 is typically equal to a Cs value ranging from 20 to 60 μF cm-2, 

with an average value of 40 μF cm-2. Therefore, the Cdl can be transformed into the ECSA as 

follows. 

ECSA = Cdl/2CS



S2.1. Wide scan XPS spectra of MnCo2O4-Ni3N, MnCo2O4 and Ni3N:

Figure S1. Wide scan XPS spectra of MnCo2O4-Ni3N, MnCo2O4 and Ni3N 



S2.2. O1s XPS spectra of MnCo2O4-NiOOH

Figure S2. High resolution XPS spectra of O1s in MnCo2O4-NiOOH



S3.1.  Drop shape analysis of bare nickel foam

Figure S3. Drop shape analysis of bare NF 



ESI S3.2. Drop shape analysis of MnCo2O4 and NiOOH. 

Figure S4. Drop shape analysis of NiOOH and MnCo2O4 



S4.1. Cyclic Voltammetry curve for the calculation of Cdl 

Figure S5. Cyclic voltammetry curve of (a) MnCo2O4-NiOOH, (b) NiOOH and (c) MnCo2O4 for the 
calculation of Cdl



S4.2. ECSA normalized LSV curve of all the catalysts. 

Figure S6. ECSA normalized LSV curve of all the catalysts.



S4.3. Comparison of the recently reported non-noble metal-based catalyst 

Catalyst Name Overpotential 

(mV)@10 mA cm-2

References

(Co-O)-MoS0.9 283 1

Co1Mo1Ni0.5 Pi 272 2

Co0.50Fe0.50-LDH 270 3

Co-THB/CP 263 4

Cr-Cu/CoOx 252 5

SCI-350 250 6

Cd-MOF 1 233 7

Table S1. Comparison of the recently reported non-noble metal-based catalyst.



S4.4. XPS analysis of MnCo2O4-NiOOH after stability test: 

Figure S7. XPS analysis of MnCo2O4-NiOOH after stability test.  (a) wide scan, high resolution XPS 
spectra of (b) Ni2p, (c) Co2p, (d) Mn2p, (e) O1s.



S5. Details discussion about DFT calculations:

The Vienna Ab initio Simulation Package (VASP) was used to do density functional theory 

(DFT) simulations to look into the catalyst's active site and Gibbs free energy. [8] A 15 Å  

vacuum was supplied in the Z- direction to prevent periodic imaging contact, and a supercell 

made up of 77 atoms with the properties of a=8.5, b=8.5, and c=25 was formed. The cutoff 

energy was selected at 520 eV and a 7 7 1-center K-mesh was used. It took structural 

optimization till the forces and energy convergence were within 0.01 eV-1 and the energy 

convergence reached 10-4 eV.

The OER mechanism consists of four stages in an alkaline media, which are explained below:

                                                                         (i)𝑀 ∗ + 𝑂𝐻 ‒    →  𝑀 ‒ 𝑂𝐻 ∗  +  𝑒 ‒

                                                   (ii)𝑀 ‒ 𝑂𝐻 ∗  + 𝑂𝐻 ‒    →  𝑀 ‒ 𝑂 ∗  + 𝐻2𝑂 +  𝑒 ‒

                                                               (iii)𝑀 ‒ 𝑂 ∗  + 𝑂𝐻 ‒    →𝑀 ‒ 𝑂𝑂𝐻 ∗ +  𝑒 ‒

                                            (iv)𝑀 ‒ 𝑂𝑂𝐻 ∗ + 𝑂𝐻 ‒     → ‒ 𝑀 ∗ +  𝑂2 +  𝐻2𝑂 + 𝑒 ‒

where, M is the metal's active site and OH*, O*, and OOH* are the intermediates adsorbed 

on the active sites. 

The following equations were used to compute the adsorption energies of each step in order 

to identify the active site:

                                      

Δ𝐸
𝑂𝐻 ∗  =  𝐸

𝑂𝐻 ∗  ‒  𝐸 ∗  ‒  𝐸𝐻2𝑂 +
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𝐸𝐻2
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The formula below was used to calculate the adsorption Gibbs free energy (G) for OER, 

which is a crucial sign of the process's spontaneity [9-10]

                           Δ𝐺𝑎𝑑𝑠 =  ∆𝐸𝑎𝑑𝑠 + ∆𝐸𝑍𝑃𝐸 ‒  𝑇∆𝑆 + ∆𝐺𝑢 + ∆𝐺𝑝𝐻

The terms EZPE, S, and T in the equation above stand for the system's difference in zero-

point energy, entropy, and temperature, respectively. For the sake of simplification, EZPE 

and TS were taken to be zero. Gu stands for the applied electrode potential, where Gu = eU, 

where e signifying the quantity of electron transfers and U for the electrode potential. GpH is 

equal to –kBT ln[H+] = 2.303KBT * pH, where B is the Boltzmann constant and T is the 

system temperature. The Gibb's energy of each intermediate was estimated under standard 

conditions (pH=0, T=298.15K) using the following equation:

                              
∆𝐺1 =  Δ𝐸

𝑂𝐻 ∗

                               
∆𝐺2 =  Δ𝐸

𝑂 ∗ ‒  Δ𝐸
𝑂𝐻 ∗

                               
∆𝐺3 =  Δ𝐸

𝑂𝑂𝐻 ∗  ‒  Δ𝐸
𝑂 ∗

                              ∆𝐺4 = 4.92 ‒  (∆𝐺1 +  Δ𝐺2 +  ∆𝐺3)

Table S2: Total energy and adsorption energy of different adsorbates on the surface of the 
MnCo2O4 electrode.

Surface Total Energy (eV) Adsorption energy (eV)
MnCo2O4 -236.69 -
Mn-OH* -246.36 1.81
Mn-O* -242.9 1.88



Table S3. Total energy and adsorption energy of different adsorbates on the surface of the 
NiOOH electrode.

Table S4. Total energy and adsorption energy of different adsorbates on the surface of the 
MnCo2O4-NiOOH electrode.

Table S5. Gibb’s free energy values of MnCo2O4, NiOOH, and MnCo2O4-Ni*OOH at 
different adsorption sites.

Mn-OOH* 250.6 5.66
Co-OH* -249.7 -1.53
Co-O* -244.5 0.277

Co-OOH* -254.2 2.06

Surface Total Energy (eV) Adsorption energy (eV)
NiOOH -219.3 -
Ni-OH* -230.31 0.47
Ni-O* -224.45 2.94

Ni-OOH* -234.64 4.23

Surface Total Energy (eV) Adsorption energy (eV)
MnCo2O4-NiOOH -456.248 -

Ni-OH* -459.235 2.268
Ni-O* -464.901 4.158

Ni-OOH* -469.407 5.24
H2O -14.8747541 -
H2 -6.787373128 -

Surface ΔG1 (eV) ΔG2 (eV) ΔG3 (eV) ΔG4 (eV)
At U=0 1.81 0.06 3.78 -0.73Mn*Co2O4

At U= 1.23 0.58 -1.16 2.55 -1.97
At U=0 -1.53 1.8 1.78 2.86MnCo*2O4

At U= 1.23 -2.76 0.58 0.55 1.63
At U=0 0.47 2.46 1.29 0.69Ni*OOH

At U= 1.23 -0.76 1.23 0.06 -0.53
At U=0 2.26 1.89 1.09 -0.32MnCo2O4-

Ni*OOH At U= 1.23 1.03 0.66 0.14 -1.55



Table S6. Table containing comparison of cell potential of recently 

reported catalysts. 

 

Cell Cell Potential Reference
Co-ZnRuOx││Co-ZnRuOx 1.48 11

Ni3Fe-NC││Ni3Fe-NC 1.49 12
S- Fe- Ni││ S- Fe- Ni 1.49 13

MOF- MoSA-WSA││MOF- MoSA-WSA 1.50 14
MoSe2@NiCo2Se4││MoSe2@NiCo2Se4 1.51 15

Cr-Cu/CoOx││Cr-Cu/CoOx 1.51 16
AuFe1NC/NF││AuFe1NC/NF 1.52 17

W2N3/Fe2N││W2N3/Fe2N 1.52 18
Co(OH)2-La(OH)3@Cu││ Co(OH)2-La(OH)3@Cu 1.56 19

V2C-Mxene││V2C-Mxene 1.57 20
CPF-Fe/Ni││CPF-Fe/Ni 1.57 21

Ni-250-2@NF││Ni-250-2@NF 1.58 22
CoMoNiPi││CoMoNiPi 1.59 23

N-NiMoO4/Ni/CNTs││N-NiMoO4/Ni/CNTs 1.64 24
NiCo-LDH@NH2-UIO-66 ││NiCo-LDH@NH2-

UIO-66
1.65 25
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