SUPPORTING INFORMATION

Mono-, bi- and tri-metallic Fe-based platinum group metal-free electrocatalysts derived from phthalocyanine for oxygen reduction reaction in alkaline media

¹Seyed Ariana Mirshokraee, ¹Mohsin Muhyuddin, ¹Jacopo Orsilli, ²Enrico Berretti, ²Alessandro Lavacchi, ³Carmelo Lo Vecchio, ³Vincenzo Baglio, ⁴Rosanna Viscardi, ⁵Andrea Zaffora, ⁵Francesco Di Franco, ⁵Monica Santamaria, ⁶Luca Olivi, ^{6,7}Simone Pollastri, ¹Carlo Santoro*

¹ Department of Materials Science, University of Milano-Bicocca, U5, Roberto Cozzi, 55 20125, Milan MI, Italy

² Istituto di Chimica Dei Composti OrganoMetallici (ICCOM), Consiglio Nazionale Delle Ricerche (CNR), Via Madonna Del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy

³ Istituto di Tecnologie Avanzate per l'Energia "Nicola Giordano" (ITAE), Consiglio Nazionale delle Ricerche (CNR), Via Salita S. Lucia sopra Contesse 5, Messina, 98126, Italy

4 Casaccia Research Center, ENEA, Santa Maria di Galeria, 00123, Rome, Italy

⁵ Department of Engineering, University of Palermo, Viale delle Scienze, 90128, Palermo, Italy

⁶ Elettra-Sincrotrone Trieste, Area Science Park, Basovizza, Trieste, Italy

⁷ Department of Physics, Computer Science and Mathematics, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy

*Corresponding author: <u>carlo.santoro@unimib.it</u>

Figure S1: XPS survey spectra for a) Fe 600 and Fe 900, b) Fe-Ni 600 and Fe-Ni 900 and c) Fe-Ni-Cu 600 and Fe-Ni-Cu 900.

•		•				
Catalysts	C (1s)	N (1s)	Fe (2p _{3/2})	Cu (2p _{3/2})	Ni (2p _{3/2})	O (1s)
Fe 600	93.4	3.2	0.3	-	-	3.1
Fe 900	95.7	1.6	0.3	-	-	2.4
Fe-Ni 600	89.4	4.4	0.2	-	0.3	5.7
Fe-Ni 900	94	2.0	0.1	-	0.1	3.8
Fe-Ni-Cu 600	89.4	3.0	0.2	0.3	0.1	7.0
Fe-Ni-Cu 900	91.9	2.4	~0.1	~0.1	< 0.1	5.5

Table S1. Atomic percentage of C1s, N1s, $Fe2p_{3/2}$, $Ni2p_{3/2}$, $Cu2p_{3/2}$ and O1s in the KB-supported catalysts derived from XPS analyses.

 Table S2. Composition of nitrogen from N1s deconvolution spectra.

			Composition	of N (relative %)			
KB-supported	Ν	I _{mine}	Pyridinic	N-M	Pyrrolic	Graphitic	N-O
Catalysts	(at. %)	(397.7 eV)	(398.3 eV)	(M=Fe, Cu, Ni)	(400.9 eV)	(402.1 eV)	(>403 eV)
				(399.1 eV±0.1)			
Fe 600	3.2	-	35.9	45.5	10.6	8.0	-
Fe 900	1.6	-	29.3	32.5	38.2	-	-
Fe-Ni 600	4.4	-	23.1	59.9	15.0	2.0	-
Fe-Ni 900	2.0	-	29.3	31.8	35.6	3.3	-
Fe-Ni-Cu 600	3.0	-	37.9	50.7	11.4	-	-
Fe-Ni-Cu 900	2.4	-	35.2	1.8	63.0	-	-

 Table S3. Composition of nitrogen from C1s deconvolution spectra.

			Composition of C	C (relative %)			
Catalysts	C (at.	Graphitic (284.3 eV)	Secondary carbons (285.0 oV)	C-N defects (286.2 eV)	C-OH and C-	C=O (288.0 eV)	COOH (289.4 eV)
	70)		(203.0 6 V)		(287.1 eV)		
Fe 600	93.4	63.9	22.0	5.5	2.0	2.0	4.6
Fe 900	95.7	55.3	29.0	4.5	3.6	1.1	6.5
Fe-Ni 600	89.4	57.1	28.7	5.9	1.9	2.6	3.8
Fe-Ni 900	94	54.9	30.5	3.8	3.9	1.4	5.5
Fe-Ni-Cu 600	89.4	40.6	40.6	7.9	1.7	4.1	5.1
Fe-Ni-Cu 900	91.9	44.8	40.7	4.3	2.9	3.1	4.2

Figure S2: Spectrum of the sample treated at 900 °C (blue line) with the best LC fit (red line) obtained using 81% Fe₃O₄ (yellowish line) and 19% pristine Fe(Pc)/C (violet line).

Figure S3: Pre-edge peaks fit: Black dots are the experimental data, blue lines the total fitted area, and in red the single components used. Upper-left small plate, the fit without the background subtraction.

Sample	Onset-potential (V)	Half-potential (V)	Limiting current density (mA cm ⁻²)
Fe (30%) 600	0.96	0.90	6.2
Fe (30%) 900	0.96	0.84	5.2
Fe (20%) 600	0.95	0.88	5.8
Fe (20%) 900	0.95	0.83	5.4
Fe (10%) 600	0.94	0.86	5.2
Fe (10%) 900	0.89	0.75	5.5
Pt/C	0.98	0.85	5

Table S4. Onset-potential, half-potential, and limiting current density belong to the Fe-based electrocatalysts with the different (wt.%) of the FePc

Table S5: Onset-potential, half-potential, and limiting current density belong to the Fe-based electrocatalysts with the different mono/bi/tri-metallic precursors.

Sample	Onset-potential (V)	Half-potential (V)	Limiting current density (mA cm ⁻²)
Fe 600	0.96	0.90	5.3
Fe 900	0.96	0.84	5.6
Fe-Ni 600	0.89	0.78	4.5
Fe-Ni 900	0.88	0.76	4.9
Fe-Ni-Cu 600	0.96	0.90	5
Fe-Ni-Cu 900	0.93	0.81	5
Pt/C	0.98	0.85	5

Figure S4. Accelerated ORR stability test performed over Fe 600 with the scan rate of 5 mVs⁻¹ in O_2 saturated 0.1 M KOH while operating RRDE at 1600 rpm; a) LSV for disk current, b) Ring current, c) Peroxide anion yield, and d) Number of electrons transferred. Pt/C in all plots is the benchmark.

Sample	Eon (V)	E _{1/2} (V)	limited current density (J _d)	Solution	cite
			(mA cm ⁻²)		
FeCoNi-CNF	-	0.77	-	0.1 M KOH	[1]
Fe-BP(N)	0.95	0.84	-6.1	0.1 M KOH	[2]
Poly-FePc	0.98	0.91	-5.49	0.1 M KOH	[3]
PPcFeCo/3D-G		0.89	-5.4	0.1 M KOH	[4]
CMP-CoFe/C	0.95	0.83	-6.5	0.1 M KOH	[5]
FePc-PcFe	0.80	0.59	-	0.1 M HClO ₄	[6]
CoFe-COP/OMC	0.90	-	-5.35	0.1 M KOH	[7]
Fe/12Zn/CoNCNTs	1.02	0.88	-5.59	0.1 M KOH	[8]
Fe 600	0.96	0.90	-5.3	0.1 M KOH	This
Fe-Ni-Cu 600	0.96	0.90	-5	0.1 M KOH	This

Table S6: Comparison of ORR performance with similar electrocatalysts in other articles

Reference

- 1. K. Muuli, R. Kumar, M. Mooste, V. Gudkova, A. Treshchalov, H.-M. Piirsoo, A. Kikas, J. Aruväli, V. Kisand and A. Tamm, *Materials*, 2023, **16**, 4626.
- 2. M. A. C. De Oliveira, V. C. Ficca, R. Gokhale, C. Santoro, B. Mecheri, A. D'epifanio, S. Licoccia and P. Atanassov, *Journal of Solid State Electrochemistry*, 2021, **25**, 93-104.
- **3.** A. Kumar, G. Yasin, M. Tabish, D. K. Das, S. Ajmal, A. K. Nadda, G. Zhang, T. Maiyalagan, A. Saad and R. K. Gupta, *Chemical Engineering Journal*, 2022, **445**, 136784.
- S. Wang, Z. Li, W. Duan, P. Sun, J. Wang, Q. Liu, L. Zhang and Y. Zhuang, *Journal of Energy Chemistry*, 2023, 86, 41-53.
- 5. H. Li and Z. Sui, New Journal of Chemistry, 2019, 43, 17963-17973.
- X. Wang, Y. Liu, Y. Wang, R. Ren, H. Chen, Z. Jiang and Q. He, *Chemelectrochem*, 2018, 5, 3478-3485.
- 7. Y. Mo, G. Liu, S. Liu and W. Lu, ACS Applied Nano Materials, 2023.
- 8. J. Xue, S. Deng, R. Wang and Y. Li, *Carbon*, 2023, 205, 422-434.