Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Fabrication of Water-Resistant Fluorescent Ink by Near-Unity

Photoluminescence Quantum yield of Doped CsPbBr3 via NiBr2

Dipanwita Roy, ^a Shramana Guha^a and Somobrata Acharya^{*a,b}

^a School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India).

^b Technical Research Centre, Indian Association for the Cultivation of Science, Jadavpur, Kolkata700032 (India).

Corresponding Author: camsa2@iacs.res.in

Contents:

1.	FFT	Figure S1
2.	EDX spectra of NCs	Figure S2
3.	Ni/Pb ratio from ICP-AES	.Table S1
4.	XPS spectra with increasing Ni ²⁺ concentration	Figure S3
5.	NMR spectra	Figure S4
6.	TGA plot	Figure S5
7.	Lattice parameter change with Ni/Pb ratio	Figure S6
8.	PL intensity with dopant concentration	Figure S7
9.	Images under UV-illumination	Figure S8
10.	. PL intensity with dopant concentration	Figure S8
11.	. PLQY with change in dopant concentration	Table S2
12.	. Comparison of PLQYs with literatures	.Table S3
13.	. Time-resolved photoluminescence decay parameters	Table S4
14.	. Change in radiative and non-radiative decay rate	.Table S5

15. Temperature Dependent PL	Figure S9
16. Images of ink in thin film	Figure S10
17. PL intensity in water with time	Figure S11

Supporting Figures

Fig. S1 FFT patterns of (a) CsPbBr₃ NCs (b) Ni^{2+} doped CsPbBr₃ NCs showing spots corresponding to (011) and (002) planes.

Fig. S2 (a-b) EDX showing the constituent elements of CsPbBr₃ NCs and Ni²⁺ doped CsPbBr₃ NCs. Insets show the atomic percentage of the elements confirming the effective doping of Ni²⁺ in CsPbBr₃ NCs. The EDX shown in right panel corresponds to Ni/Pb ratio of 0.34 (corresponding Ni/Pb molar ratio used in synthesis is 0.5).

Ni/Pb Elemental Ratio (from ICP)	Ni/Pb Molar Ratio Used in the Synthesis
0	0
0.075	0.1
0.18	0.25
0.26	0.35
0.38	0.5
0.53	0.7

Table S1. Ni/Pb molar ratio used in the synthesis for the variation of Ni dopant concentration and the elemental ratio measured using ICP-AES showing Ni-incorporation in CsPbBr₃ NCs.

Fig. S3 XPS spectra for CsPbBr₃ NCs (red, Ni/Pb=0) and Ni²⁺ doped CsPbBr₃ NCs (blue, Ni/Pb=0.38 and green, Ni/Pb=0.53) showing the change in octahedral environment upon increasing Ni²⁺ concentration. The Ni/Pb ratio from ICP-AES is used in legends. For Ni/Pb=0.53,

an additional peak for Ni 2p appears at ~854.7 eV due to the surface Ni-O bonds which may relate to the bonding between surface Ni²⁺ and ligands.¹

Fig. S4 ¹³³Cs NMR spectra for both CsPbBr₃ (red line) and Ni²⁺ doped CsPbBr₃ (blue line) NCs showing change in local environment of [PbBr₆]⁴⁻ octahedra upon Ni²⁺ incorporation in CsPbBr₃ NCs.

Fig. S5 TGA curves for both CsPbBr₃ (red line) and Ni²⁺ doped CsPbBr₃ (blue line) NCs showing extent of thermal stability.

Fig. S6 Lattice parameters versus Ni/Pb elemental ratio (obtained from ICP-AES) shows linear relationship.

Fig. S7 Variation of PL intensity with changing the Ni/Pb elemental ratio (obtained from ICP-AES).

Fig. S8 The images of the doped and undoped CsPbBr₃ NCs in hexane with changing Ni/Pb elemental ratio (obtained from ICP-AES).

Ni/Pb Elemental Ratio (from ICP-AES)	Ni/Pb Molar ratio used in the synthesis	PLQY (%)
0	0	68
0.075	0.1	72
0.18	0.25	78
0.26	0.35	81
0.38	0.5	98
0.53	0.7	72

Table S2. Comparison of PLQY with increasing dopant concentration measured from ICP-AES and Ni/Pb molar ratio used in the synthesis.

Literature	Material	PLQY	Ni Concentration
2	Ni ²⁺ doped CsPbCl ₃	96.5%	11.9%
	Ni ²⁺ doped CsPbCl _{2.4} Br _{0.6}	92%	2.8%
	Ni ²⁺ doped CsPbCl ₂ Br	93%	2.2%
3	Ni ²⁺ doped CsPbCl ₃	72%	6.1% Ni
	Ni ²⁺ and Pr ³⁺ doped CsPbCl ₃	89%	
4	Ni ²⁺ doped CsPbBr ₃	82.9%	Feed molar ratio Ni/Pb=2.5
5	Ni ²⁺ doped CsPbBr ₃ powder	39.27%	8.5%
6	Ni ²⁺ doped CsPbBr ₃ nanoplatelets	78%	From Ni-Br mixed solution
			(0.2 mmol NiBr ₂ in 0.2 ml
			HBr) 0.35 µL used
7	Ni ²⁺ doped CsPbBr ₃ nanocrystals	Not	-
		available	
8	Ni ²⁺ doped CsPbBr ₃ quantum dots	70.62%	22%
		90.77%	after Pb ₃ (PO4) ₂ coating
Our work	Ni ²⁺ doped CsPbBr ₃ nanocrystals	98%	~5.6%

Table S3. Comparison of PLQY with dopant (Ni²⁺) concentration obtained from literatures. ²⁻⁸

Ni/Pb Elemental	τ1 (ns)	τ2 (ns)	τ3 (ns)	A_{l}	A_2	A3	$\tau_{avg}(ns)$
Ratio (from ICP-							
AES)							
0	11.6	61.0	2.6	0.20	0.02	0.78	5.4
0.075	8.7	3.9	34.0	0.30	0.67	0.03	5.4
0.18	7.8	2.2	32.2	0.25	0.02	0.73	4.8
0.26	6.7	23.6	2.0	0.29	0.03	0.68	4.6
0.38	5.1	1.4	15.9	0.5	0.4	0.09	4.0
0.53	10.5	38.6	3.1	0.24	0.02	0.74	5.6

Table S4. Time-resolved photoluminescence decay parameters of the CsPbBr₃ and Ni²⁺ doped CsPbBr₃ NCs while varying the amount of dopant.

Ni/Pb Elemental	$K_r(s^{-1}) \times 10^9$	$K_{nr}(s^{-1}) \times 10^9$
Ratio (from ICP-		
AES)		
0	0.125	0.185
0.075	0.133	0.052
0.18	0.1625	0.0458
0.26	0.2025	0.0475
0.38	0.213	0.0044
0.53	0.128	0.05

Table S5. Radiative (K_r) and non-radiative (K_{nr}) decay rate of the CsPbBr₃ and Ni²⁺ doped CsPbBr₃ NCs while varying dopant concentration.

*Equation 1,2 have been followed to calculate the Radiative (K_r) and non-radiative (K_{nr}) decay rates:

 $k_{tot} = k_{nr} + k_r = 1/\tau_{avg}$ (equation 1); $k_r = PLQY/\tau_{avg}$ (equation 2)

Fig. S9 (a-b) Temperature dependent PL confirming the trends in reduction of PL with temperature is similar with the luminescent ink. The extent of drop of PL is maximized for pristine one compared to the doped CsPbBr₃ NCs (elemental ratio of Ni/Pb=0.38). This observation supports the fact that Ni²⁺ doped CsPbBr₃ NCs show enhanced temperature stability.

Fig. S10 The thin glass-film of the fluorescent ink placed on paper shows its transparency (leftside). The right-side image shows the luminescence nature of the thin film under the UV light illumination at 365 nm after several heating-cooling cycles.

Fig. S11 Images of luminescence of the thin film of the fluorescent ink stored in water for several days (under UV light illumination).

References:

- 1 A. Shapiro, M. W. Heindl, F. Horani, M.-H. Dahan, J. Tang, Y. Amouyal and E. Lifshitz, J. Phys. Chem. C, 2019, 123, 24979–24987.
- Z.-J. Yong, S.-Q. Guo, J.-P. Ma, J.-Y. Zhang, Z.-Y. Li, Y.-M. Chen, B.-B. Zhang, Y. Zhou, J. Shu, J.-L. Gu, L.-R. Zheng, O. M. Bakr and H.-T. Sun, *J. Am. Chem. Soc.*, 2018, 140, 9942–9951.
- 3 J. Lyu, B. Dong, G. Pan, L. Sun, X. Bai, S. Hu, B. Shen, B. Zhou, L. Wang, W. Xu, D. Zhou, L. Xu and H. Song, *Nanoscale*, 2021, **13**, 16598–16607.
- 4 H. Kim, S.-R. Bae, T. H. Lee, H. Lee, H. Kang, S. Park, H. W. Jang and S. Y. Kim, *Adv. Funct. Mater.*, 2021, **31**, 2102770.
- 5 T. Chen, R. Liu, S. Tang, X. Li, S. Ye, X. Duan, R. Wang, Y. Shi, J. Yang, F. Qiu, Y. Yang, X. Wen and C. Wang, *AIP Adv.*, 2021, **11**, 115008.
- 6 J. Song, Y. Gao, Z. Meng, Z. Jiang, X. Cao, Q. Zeng and T. Hu, *Opt. Mater. (Amst).*, 2023, **138**, 113611.
- 7 S. Thawarkar, P. J. S. Rana, R. Narayan and S. P. Singh, *Langmuir*, 2019, **35**, 17150–17155.
- 8 D. Huang, J. Bo, R. Zheng, C. Luo, X. Sun, Q. Li, D. Shen, Z. Zheng, M. Chen, Y. Yang, A. Tang, S. Chen and Y. Chen, *Adv. Opt. Mater.*, 2021, **9**, 2100474.