Electronic Supplementary Material for "Investigating Nano-Sized Tumor-Derived Extracellular Vesicles in Enhancing Anti-PD-1 Immunotherapy"

Hesam Abouali,^{†,¶} Michelle Przedborski,^{‡,¶} Mohammad Kohandel,^{*,‡} and Mahla

Poudineh*,†

†Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada

[‡]Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada ¶these authors contributed equally to this work

E-mail: kohandel@uwaterloo.ca; mahla.poudineh@uwaterloo.ca

Tables and Equations

Cellular Species	Description	Mathematical representation
CD4+ Th0	Naive helper (CD4+) T-cell population	T_{N4}
CD4+ Th1	Type 1 helper T-cell population	Th_1
CD4+ Th2	Type 2 helper T-cell population	Th_2
CD4+ Treg	Regulatory T-cell population	T_{reg}
Naive CD8+	Naive cytotoxic (CD8+) T-cell population	T_{N8}
CD8+ Tc	Cytotoxic (CD8+) T-cell population	T_c
DC	Dendritic cell population	DC
NK	Natural killer cell population	NK
Cancer	Cancer cell population	С

Table 1: Cellular species in the interaction network.

Table 2: Cytokines, TDEV content, and drug species in the interaction network.

Protein Species	Description	Mathematical Representation
IL-4	Concentration of interleukin 4	[IL-4]
IL-6	Concentration of interleukin 6	[IL-6]
IL-12	Concentration of interleukin 12	[IL-12]
$IFN - \gamma$	Concentration of interferon gamma	$[IFN - \gamma]$
$TGF - \beta$	Concentration of tumor growth factor	$[TGF - \beta]$
PD-1	Concentration of programmed cell death protein 1	[PD-1]
PD-L1	Concentration of programmed death-ligand 1	[PD-L1]
Extracellular Vesicles Species	Description	Mathematical Representation
TDEV	Concentration of total extracellular vesicles	$[E_c]$
miRNA-21	Concentration of miRNA-21	[m21]
miRNA-203	Concentration of miRNA-203	[m203]
miRNA-214	Concentration of miRNA-214	[m214]
HSP-70	Concentration of heat shock protein 70	[HSP70]
Drug Species	Description	Mathematical Representation
Nivolumab	Concentration of the PD-1 inhibitor Nivolumab	[A]
Drug/PD-1 complex	Concentration of Nivolumab:PD-1 complex	[A: PD-1]

Protein Species	Nominal Value	Range	Units	Reference
IL-4	11	0 - 61.37	pg/ml	Smalley et al. ¹
IL-6	3339.16	0 - 35884.0	pg/ml	Smalley et al. ¹
IL-12	1.54	0 - 11.44	pg/ml	Smalley et al. ¹
IFN- γ	0.45	0 - 482.31	pg/ml	Smalley et al. ¹
$TGF-\beta$	1000	0 - 4000	pg/ml	Geils et al. 2 - Hawinkels et al. $^{-3}$ Kohla et al. 4
PD-1	9.9	-	(pg/ml)/cell	Smalley et al. ¹
PD-L1	1	-	(pg/ml)/cell	Smalley et al. ¹
Extracellular Species	Nominal Value	Range	Units	Reference
TDEV	3600	1000 - 4000	pg/ml	Friedman et al. ⁵
miRNA-21	1.4	0.5 - 2	pg/ml	Friedman et al. ⁵
miRNA-203	0.84	0.5 - 1.5	pg/ml	Friedman et al. ⁵
miRNA-214	1.5	0.5 - 1.5	pg/ml	Estimated based on Friedman et al. 5 - Yin et al. 6
HSP-70	1	1 - 4	ng/ml	Chanteloup et al. ⁷
Cell Fractions	Nominal Value	Range	Units	Reference
T_{N4}	0.00292	0.001 - 0.69	-	Smalley et al. ¹ - Friedman et al. ⁵
Th_1	0.00486	0.001 - 0.99	-	Smalley et al. ¹ - Friedman et al. ⁵
Th_2	0.00973	0.001 - 0.99	-	Smalley et al. ¹
T_{reg}	0.00121	0.001 - 0.99	-	Friedman et al. ⁵
T_{N8}	0.00194	0.001 - 0.97	-	Smalley et al. ¹ - Friedman et al. ⁵
T_c	0.00486	0.0 - 0.59	-	Smalley et al. ¹ - Friedman et al. ⁵
NK	0.00121	0.001 - 0.99	-	Bindea et al. ⁸ - Stankovic et al. ⁹
DC	1e-5	0.001 - 0.99	-	Smalley et al. ¹
C	0.97322	0.1 - 0.97	-	Smalley et al. ¹ - Friedman et al. ⁵
Drug	Nominal Value	Range	Units	Reference
Nivolumab	240	N/A	mg q2Weeks	Samlowski et al. ¹⁰

Table 3: Initial protein levels, and initial cells populations

Naive CD4 T cells

The first term in the second equation shows the proliferation of naive CD4 T cells¹ (term #1). Naive CD4 T cells are differentiated into Th1, Th2, and T_{reg} T cells. TGF- β inhibits differentiation of Th1 T cells, and it is associated with reduced IL-12 receptor $\beta 2$.^{11–13} PD-L1 inhibits differentiation of Th1 and Th2 T cells^{14–16} (term #2 and #3). TGF- β helps differentiation of naive T cells into T_{reg}.^{17,18} This differentiation is promoted by PD-L1 [TGF- β independent or in synergy with TGF- β];¹⁹ however, in the presence of TGF- β , IL-6 blocks this differentiation into T_{reg}, and directs it into helper type 17 lineage²⁰ (term #4).

$$\frac{dT_{N_4}}{dt} = \underbrace{n_4 T_{N_4}}_{\text{growth of naive CD4 T cells}}$$

$$-\underbrace{\left(d_{1-12}N4\frac{[IL-12]}{q_{dIL12}+[IL-12]}\frac{r_{TGF}}{r_{TGF}+[TGF]}+d_{1-IFN}T_{N4}\frac{[IFN\gamma]}{q_{IFN}+[IFN\gamma]}\right)}_{QIFN}$$

$$\times \underbrace{\left(\frac{s_1}{s_1 + [PD - 1: PD - L1]}\right)}_{\text{Th} 1 \text{ T salls differentiation}}$$

Th1 T cells differentiation

$$-\underbrace{\left(d_{2}T_{N4}\frac{[IL-4]}{q_{dIL4}+[IL-4]}\right)\left(\frac{s_{2}}{s_{2}+[PD-1:PD-L1]}\right)}_{\mathbf{y}}$$

Th2 T cells differentiation

$$-\left(d_{T_{reg}-TGF}T_{N4}\frac{[TGF]}{q_{TGF}+[TGF]}+d_{T_{reg}-TGF}T_{N4}\frac{[TGF]}{q_{TGF}+[TGF]}\cdot\frac{[PD-L1]}{s_{3}+[PD-L1]}\right)$$

$$\times \qquad \left(\frac{r_{IL-6}}{r_{IL-6} + [IL-6]}\right)$$

regulatory T cells differentiation (with synergistic effect of PD-L1 and without it)

$$-\underbrace{\delta_{T_{N4}}[T_{N4}]}_{\text{natural death}}\tag{1}$$

regulatory T cells differentiation (with synergistic effect of PD-L1 and without it)

Helper type 1 CD4 T cells

The first term in the second equation shows the proliferation of Th1 cells¹ (term #1). The second term describes the differentiation of the Th1 cell from naive CD4 T cells into Th1 cells in the presence of and IFN- γ^{21} and IL-12,²² which can be inhibited by TGF- β ,^{11–13}. Both of these differentiation promoters are inhibited by the PD-1:PD-L1 complex^{14–16} (term #2).

$$\frac{dTh_1}{dt} = \underbrace{n_1 Th_1}_{\text{growth of Th1 T cells}}$$

$$+\underbrace{\left(d_{1-12}N4\frac{[IL-12]}{q_{dIL12}+[IL-12]}\frac{r_{TGF}}{r_{TGF}+[TGF]}+d_{1-IFN}T_{N4}\frac{[IFN\gamma]}{q_{IFN}+[IFN\gamma]}\right)}_{\text{Th1 T cells differentiation}}$$

$$\times \underbrace{\left(\frac{s_1}{s_1 + [PD - 1: PD - L1]}\right)}_{\text{Th1 T cells differentiation}}$$

$$-\underbrace{\delta_{Th_1}[Th_1]}_{\text{natural death}} \tag{2}$$

Helper type 2 CD4 T cells

The first term in the following equations is related to the differentiation of the Th2 cells from naive CD4 T cells into Th2 cells with the help of IL-4^{21,22} (term #1). The second terms is added for the mitosis-dependent proliferation of Th2 cells which can be upregulated by IL-4^{21,22} and inhibited by IFN- γ^{23} and the PD-1:PD-L1 complex¹⁴⁻¹⁶ (term #2).

$$\frac{dTh_2}{dt} = \underbrace{\left(d_2T_{N4}\frac{[IL-4]}{q_{dIL4} + [IL-4]}\right)\left(\frac{s_2}{s_2 + [PD-1:PD-L1]}\right)}_{\text{Th2 T cells differentiation}}$$

 $+\underbrace{\left(g_{2}Th_{2}+g_{2-4}Th_{2}\frac{\left[IL-4\right]}{q_{gIL4}+\left[IL-4\right]}\right)\left(\frac{r_{IFN}}{r_{IFN}+\left[IFN\gamma\right]}\right)}_{\text{natural death}}-\underbrace{\delta_{Th_{2}}\left[Th_{2}\right]}_{\text{natural death}}\tag{3}$

Regulatory CD4 T cells

The first term corresponds for the proliferation of T_{reg} cells (term #1). TDEV miRNA-214 helps the expansion of CD4+CD25+Foxp3+ T_{reg} in the TME by downregulation of the PTEN-mediated signalling cascade. PTEN is a negative modulator of T_{reg} homeostasis *in vivo* and expansion *ex vivo*⁶ (term #2). TGF- β is necessary for T_{reg} initial differentiation from naive CD4+ T cells^{17,18} (term #3).

$$\frac{dT_{reg}}{dt} = \underbrace{n_{reg}T_{reg}}_{\text{growth of regulatory T cells}} + \underbrace{\left(n_{reg-214}T_{reg}\frac{[miR214]}{q_{214} + [miR214]}\right)}_{\text{expansion by miRNA-214}}$$

$$+\underbrace{\left(d_{T_{reg}-TGF}T_{N4}\frac{[TGF]}{q_{TGF}+[TGF]}+d_{T_{reg}-TGF}T_{N4}\frac{[TGF]}{q_{TGF}+[TGF]}\frac{[PD-L1l]}{s_{3}+[PD-L1]}\right)}_{\mathbf{Y}}$$

regulatory T cells differentiation (with synergistic effect of PD-L1 and without it)

$$\times \underbrace{\left(\frac{r_{IL-6}}{r_{IL-6} + [IL-6]}\right)}_{\text{natural death}} - \underbrace{\delta_{T_{reg}}[T_{reg}]}_{\text{natural death}}$$
(4)

regulatory T cells differentiation (with synergistic effect of PD-L1 and without it)

Th2 T cells Proliferation (IL-4 dependent and IL-4 independent)

Naive CD8 T cells

In the following equation the first term corresponds for the proliferation of naive CD8 T cells¹ (term #1). The next term describes the product of naive CD8 differentiation into cytotoxic CD8 T cells with the help of Th1 T cells,^{24,25} which can be inhibited by PD-L1 binding to the PD-1¹⁴⁻¹⁶ (term #2).

$$\frac{dT_{N8}}{dt} = \underbrace{n_8 T_{N8}}_{\text{growth of naive CD8 T cells}} - \underbrace{d_c T_{N8} (\frac{Th_1}{q_1 + Th_1}) (\frac{s_c}{s_c + [PD - 1: PD - L1]})}_{\text{differentiation of CD8 T cells}}$$

$$-\underbrace{\delta_{T_{N8}}[T_{N8}]}_{\text{natural death}} \tag{5}$$

Cytotoxic CD8 T cells

In the equation for the cytotoxic CD8 T cells, the first term describes the proliferation of cytotoxic T cells, which can be positively influenced by IL- 12^{26} (terms #1 and #2). The final term represents the cytotoxic CD8 T cells being differentiated from the naive CD8 T cells with help of Th1 cells, which can be inhibited by PD-1:PD-L1 complex¹⁴⁻¹⁶ (term #3).

$$\frac{dT_c}{dt} = \underbrace{n_c T_c}_{\text{growth of cytotoxic CD8 T cells}} + \underbrace{g_{c-12} T_c \left(\frac{[IL-12]}{q_{gIL12} + [IL-12]}\right)}_{\text{growth of cytotoxic CD8 T cells}} + \underbrace{d_c T_{N8} \left(\frac{Th_1}{q_1 + Th_1}\right) \left(\frac{s_c}{s_c + [PD-1:PD-L1]}\right)}_{\text{growth of cytotoxic CD8 T cells}} - \underbrace{\delta_{T_c} [T_c]}_{\text{natural death}} \tag{6}$$

Natural killer cells

In the adaptive immune responses, NK cells are activated by Th1-type cytokines such as IL-2, -12, or -18^{27} (term #1).

$$\frac{d[NK]}{dt} = \underbrace{g_{NK-12}NK\left(\frac{[IL-12]}{q_{gIL12} + [IL-12]}\right)}_{\text{IL-12-dependent proliferation of natural killer cells}} - \underbrace{\delta_{NK}[NK]}_{\text{natural death}}$$
(7)

Dendritic cells

DCs' proliferation can be effected by necrotic cancer cells lysates such as release danger associated molecular patterns (DAMPs) including heat shock proteins and high mobility group box protein 1 (HMGB1).^{28,29} Moreover, results demonstrate that TDEV miRNA-203 can adversely regulate the Toll-like Receptor 4 in dendritic cells³⁰ which can affect their maturation³¹ (term #1). Also, Th1 T cells help activation of dendritic cells²⁴ (term #2).

$$\frac{d[DC]}{dt} = \underbrace{g_{DC-cancer}C\left(\frac{r_{203}}{r_{203} + [miR203]}\right)}_{\text{maturation by cancer cells}} + \underbrace{g_{DC-Th_1}[Th_1]}_{\text{maturation by Th1 cells}} - \underbrace{\delta_{DC}[DC]}_{\text{natural death}}$$
(8)

Cancer cells

In the equation for cancer cells, the first term corresponds to their natural growth (term #1).¹ TDEV miRNA-21 has been shown to have a pro-tumor effect through different mechanisms^{32–34} (term #2). Cytotoxicity of NK cells³⁵ and cytotoxic CD8⁺ cells³⁶ toward cancer cells is mediated by many different mechanisms, among which perforin/granzyme cytotoxicity is the most effective way (term #3 and #4).

$$\frac{dC}{dt} = \underbrace{n_{cancer}C}_{\text{growth of cancer cells}} + \underbrace{n_{cancer-21}C\frac{[miR21]}{q_{21} + [miR21]}}_{\text{expansion by miR-21}} - \underbrace{k_cCT_c}_{\text{elimination by cytotoxic T cells}} - \underbrace{k_{NK}C.NK}_{\text{elimination by cytotoxic T cells}}$$
(9)

elimination by natural killer cells natural death

Equations for Cytokines

TGF- β

The TGF- β present in this model has been supposed to be produced mainly by T_{reg} , which is in agreement with the literature as it has been shown to protect the role of T_{reg} in the TME as immune tolerance regulator and promotes its homeostasis.^{37–41}

$$\frac{d[TGF - \beta]}{dt} = \underbrace{p_{Treg-TGF}Treg}_{\text{production by } T_{\text{reg}} \text{ cells}} - \underbrace{\delta_{TGF}\left[TGF\right]}_{\text{natural decay}}$$
(10)

$\mathbf{IFN-}\gamma$

IFN- γ is produced by most of the anti-tumor immune cells here in this model. The first term shows the production of IFN- γ by Th1 T cells^{21–23} which is inhibited by IL-4⁴² and IL-6²¹ and T_{reg}.⁴³ T_{reg} suppresses IFN- γ expression of Th1 cells^{43,44} (term #1). TGF- β hampers production of IFN- γ by CD8⁺⁴⁵ and NK cells [*in vivo*, ^{46,47} and IL-12 dependent ^{48–50} productions (term #2 and #3). TDEV HSP70 enhances the secretion of IFN- γ by NKs^{51,52} (term #3).

$$\frac{d\left[IFN-\gamma\right]}{dt} = \underbrace{p_{1-IFN}Th_1\left(\frac{r_{IL4}}{r_{IL4} + \left[IL4\right]}\right)\left(\frac{r_{IL6}}{r_{IL6} + \left[IL-6\right]}\right)\left(\frac{r_{Treg}}{r_{Treg} + \left[Treg\right]}\right)}_{\text{production by Th1}}$$

 $+\underbrace{p_{c-IFN}T_c\left(\frac{r_{TGF}}{r_{TGF}+[TGF]}\right)}_{\text{production by CD8+ Tc}}$

$$+\underbrace{p_{NK-IFN}NK\left(\frac{r_{TGF}}{r_{TGF}+[TGF]}+\frac{[HSP70]}{q_{HSP70}+[HSP70]}\right)}_{\text{production by NKs}}-\underbrace{\delta_{IFN}\left[IFN\right]}_{\text{decay rate}}(11)$$

Interleukin 4

In this equation, the first term is for the production of IL-4 by Th2 cells¹ which can be inhibited by Treg cells^{53,54} (term #1). The second term describes the production of IL-4 by Th2 cells in the presence of IL-6¹ (term #2).

$$\frac{d\left[IL-4\right]}{dt} = \underbrace{p_{2-4}Th_2\left(\frac{r_{Treg}}{r_{Treg} + \left[Treg\right]}\right)}_{\text{production by Th2}} + \underbrace{p_{2-4-6}Th_2\left(\frac{\left[IL-6\right]}{q_{IL6} + \left[IL-6\right]}\right)}_{\text{production by Th2 in the presence of IL-6}}$$

$$-\underbrace{\delta_{IL-4}\left[IL-4\right]}_{\text{decay rate}}\tag{12}$$

Interleukin 6

In this equation, the first term is for the production of IL-6 by Th2 cells¹(term #1). The second term describes the production of IL-6 by DC cells¹ (term #2).

$$\frac{d\left[IL-6\right]}{dt} = \underbrace{p_{2-6}Th_2}_{\text{production by Th2}} + \underbrace{p_{DC-6}DC}_{\text{production by antigen presenting cells}} - \underbrace{\delta_{IL-6}\left[IL-6\right]}_{\text{natural decay}}$$
(13)

Interleukin 12

In this equation, the first term is for the production of IL-12 by DC cells which TDEV miRNA-203 disrupts this cytokine's productions by DC cells³⁰(term #1). The second term describes the production of IL-12 by Th1 cells¹ (term #2). The third term describes the production of IL-12 by NK cells¹ (term #3).

$$\frac{d\left[IL-12\right]}{dt} = \underbrace{p_{DC-12}DC\left(\frac{r_{203}}{r_{203} + [miR203]}\right)}_{\text{production by DCs}} + \underbrace{p_{1-12}Th_{1}}_{\text{production by Th1 cells}} + \underbrace{p_{NK-12}NK}_{\text{production by NK cells}} - \underbrace{\delta_{IL12}\left[IL-12\right]}_{\text{natural decay}} \tag{14}$$

Equations for TDEVs

Released TDEVs

TDEVs are mainly released from cancer cells. They contain HSP70,⁵² PD-L1^{55,56} miRNA-21,⁵⁷ miRNA-214,⁶ and miRNA-203.³⁰ TDEVs miRNAs 21, 214, and 203 affect cancer cells, T_{reg} , and DCs respectively. miRNAs are released upon their contact with their target cells. TDEV miRNA-21, miRNA-203, and miRNA-214 are released when they are in contact with cancer cells, dendritic cells, and regulatory T cells, respectively. TDEV miRNA-21 has been shown to have anti-apoptotic effect in glioblastoma cells.⁵⁸ TDEV HSP70 enhances the secretion of IFN- γ by NKs.^{51,52}

$$\frac{dE_c}{dt} = \underbrace{\lambda_{E_c}C}_{\text{production by cancer cells}} - \underbrace{\delta_{E_c}E_C}_{\text{natural decay}}$$

$$-\underbrace{d_{deg}E_c\left(\frac{[Treg]}{k_{T_{reg}} + [Treg]} + \frac{[DC]}{k_{DC} + [DC]} + \frac{[C]}{k_{can} + [C]}\right)}_{(15)}$$

degradation in contact with target cells

HSP70

$$\frac{d\left[HSP70\right]}{dt} = \underbrace{\lambda_{exoHSP70}E_c}_{\text{TDEV HSP70}} - \underbrace{\delta_{HSP70}\left[HSP70\right]}_{\text{natural decay}}$$
(16)

miRNA-21

$$\frac{d[m21]}{dt} = \underbrace{\lambda_{exo-m21}E_c\left(\frac{[C]}{k_{can} + [C]}\right)}_{\text{released in contact with cancer cells}} - \underbrace{\delta_{m21}[m21]}_{\text{natural decay}}$$
(17)

miRNA-214

$$\frac{d[m214]}{dt} = \underbrace{\lambda_{exo-m214}E_c\left(\frac{[Treg]}{k_{Treg} + [Treg]}\right)}_{\text{released in contact with regulatory T cells}} - \underbrace{\delta_{m214}\left[m214\right]}_{\text{natural decay}}$$
(18)

$$\frac{d[m203]}{dt} = \underbrace{\lambda_{exo-m203}E_c\left(\frac{[DC]}{k_{DC} + [DC]}\right)}_{\text{released in contact with dendritic cells}} - \underbrace{\delta_{m203}[m203]}_{\text{natural decay}}$$
(19)

Equations for PD-1 and PD-L1

PD1

In this model, it has been assumed that all immune cells are expressing PD-1 in the same amount. The first term in the evolution of PD-1 shows this expression¹ (term #1). The second term shows its consumption to form the PD-1:PD-L1 complex¹ (term #2); this complex can be dissociated into PD-1 and PD-L1¹ (term #3). Finally, it can bind to the anti-PD-1 treatment drug to form the drug-PD-1 complex which can also be dissociated into its forming components (term #4).

$$\frac{d\left[PD-1\right]}{dt} = \underbrace{\rho\left(\frac{dTh_1}{dt} + \frac{dTh_2}{dt} + \frac{dT_c}{dt} + \frac{dDC}{dt} + \frac{NK}{dt}\right)}_{\text{expression of PD-1 on Th1, Th2, Tc, DC and NK cells}}$$

$$- \underbrace{\beta_{+} \left[PD - 1 \right] \left[PD - L1 \right]}_{\beta_{-} \left[PD - 1 : PD - L1 \right]} + \underbrace{\beta_{-} \left[PD - 1 : PD - L1 \right]}_{\beta_{-} \left[PD - 1 : PD - L1 \right]}$$

 $formation \ of \ the \ PD-1:PD-L1 \ complex \qquad dissociation \ of \ the \ PD-1:PD-L1 \ complex$

$$- \underbrace{\alpha_{+} \left[PD - 1 \right] \left[A \right]}_{+} + \underbrace{\alpha_{-} \left[PD - 1 : A \right]}_{(20)}$$

binding of PD-1 to Nivolumab dissociation of the Nivolumab:PD-1 complex

PD-L1

In the modeling study by Friedman et al⁵ it has been noted that the concentration of PD-L1 is unknown. So, in that work the concentration of TDEVs containing PD-L1, has been suggested to correlate with overall sEV concentration from cancer cells. However, in this model, to take the TDEV PD-L1 into account more accurately, an additional term has been added. $\lambda_{exo-PDL1}$ is the PD-L1 TDEV expression level adopted from the study by Chen et al.⁵⁵

$$\frac{d\left[PD-L1\right]}{dt} = \underbrace{\lambda\left(\frac{dTh_1}{dt} + \frac{dTh_2}{dt} + \frac{dT_c}{dt} + \frac{dC}{dt}\right)}_{\text{expression of PD-L1 on Th1, Th2, T8, and cancer cells}} + \underbrace{\lambda_{cancer-IFN}\frac{dC}{dt}\left(\frac{\left[IFN\right]}{q_{IFN-PDL1} + \left[IFN\right]}\right)}_{\text{upregulation of PD-L1 in cancer by IFN-}\gamma}$$

$$+\underbrace{\lambda_{exo-PDL1}\frac{dE_c}{dt}}_{\text{TDEV PD-L1}} - \underbrace{\beta_+ \left[PD-1\right]\left[PD-L1\right]}_{\text{formation of the PD-1:PD-L1 complex}} + \underbrace{\beta_- \left[PD-1:PD-L1:PD-L1\right]}_{\text{dissociation of the PD-1:PD-L1 complex}} (21)$$

Equation for PD-1:PD-L1 Complex

Here, the first term describes the binding of the receptor PD-1 to its ligand, PD-L1 resulting in the PD-1:PD-L1 complex (term #1). The second term results from the dissociation of the PD-1:PD-L1 complex¹⁶ (term #2).

$$\frac{d\left[PD-1:PD-L1\right]}{dt} = \underbrace{\beta_{+}\left[PD-1\right]\left[PD-L1\right]}_{\text{binding of PD-1 to PD-L1}} - \underbrace{\beta_{-}\left[PD-1:PD-L1\right]}_{\text{dissociation of PD-1:PD-L1 complex}}$$
(22)

Equation for Drug

In this equation, the first term describes the administration of the anti-PD-1 drug¹⁰ (term #1). This drug can bind to the PD-1 receptor preventing its binding to PD-L1¹ (term #2).

The third term shows the dissociation of the drug-PD-1 complex¹ (term #3). The final term is for the natural decay of the drug in the system¹ (term #4). According to the literature,¹⁰ 240 mg of Nivolumab is administered every two weeks for the duration of anti-PD1 therapy. Here, as a simplification, this quantity is divided into 14 equal portions (14 days), and it is being used by cells in an equal concentration during every day of the simulations.

$$\frac{dA}{dt} = \underbrace{\widetilde{A}(t)}_{\text{introduction of the drug into the TME}} - \underbrace{\alpha_{+}\left[A\right]\left[PD-1\right]}_{\text{the binding of drug to PD-1}} + \underbrace{\alpha_{-}\left[A:PD-1\right]}_{\text{dissociation of the drug:PD-1 complex}} - \underbrace{\delta_{A}\left[A\right]}_{\text{natural decay}} (23)$$

Equation for Drug:PD-1 Complex

In this equation, the first term is for the binding of the anti-PD1 drug, Nivolumab, to the PD-1 receptor forming the Nivolumab:PD-1 complex (term #1). The second term originates from the dissociation of the drug complex¹⁵ (term #2).

$$\frac{d\left[A:PD-1\right]}{dt} = \underbrace{\alpha_{+}\left[A\right]\left[PD-1\right]}_{\text{binding of drug with PD-1}} - \underbrace{\alpha_{-}\left[A:PD-1\right]}_{\text{dissociation of the drug complex}}$$
(24)

Parameter	Description	Mathematical
Number	Description	Representation
1	proliferation rate of naïve CD4 cells	n_4
2	proliferation rate of naïve CD8 cells	n_8
3	proliferation rate of Th1 cells	n_1
4	proliferation rate of Treg cells	n_{reg}
5	miRNA214-dependent proliferation rate of Treg cells	$n_{reg-214}$
6	IL 12-independent proliferation rate of Tc cells	n_c
7	proliferation rate of cancer cells	n_{cancer}
8	miRNA21-dependent proliferation rate of cancer cells	$n_{cancer-21}$
9	IL 4-independent growth rate of Th2 cells	g_2
10	IL 4-dependent growth rate of Th2 cells	g_{2-4}
11	IL 12-dependent growth rate of Tc cells	g_{c-12}
12	IL 12-dependent growth rate of natural killer cells	g_{NK-12}
13	cancer cells-dependent growth rate of dendritic cells	$g_{DC-cancer}$
14	Th1 cells-dependent growth rate of dendritic cells	g_{DC-Th1}
15	IL 12-dependent differentiation rate of	dr. 10
15	naïve CD4 cells into Th1 cells	<i>a</i> ₁₋₁₂
16	IFN- γ -dependent differentiation rate of	di unu
10	naïve CD4 cells into Th1 cells a_{1-1}	
17	IL 4-dependent differentiation rate of	da
11	naïve CD4 cells into Th2 cells	
18	TGF- β -dependent differentiation rate of	da aca
10	naïve CD4 cells into Treg cells	wTreg-TGF

Table 4: Description of the kinetic parameters and their mathematical representation used in the model.

Parameter	Description	Mathematical	
Number	Description	Representation	
19	Differentiation rate of naïve CD8 cells into cytotoxic CD8 cells	d_c	
20	Rate of cancer cell killing by Tc cells	k_c	
21	Rate of cancer cell killing by natural killer cells	k_{NK}	
20	Half-maximal PD-1:PD-L1 concentration for inhibition of	_	
	naïve CD4 cells differentiation into Th1 cells	81	
0.0	Half-maximal PD-1:PD-L1 concentration for inhibition of	0	
23	naïve CD4 cells differentiation into Th2 cells		
24	Half-maximal PD-1:PD-L1 concentration for promotion of	0	
	naïve CD4 cells differentiation into Treg cells	33	
25	Half-maximal PD-1:PD-L1 concentration for inhibition of	S_c	
20	naïve CD8 cells differentiation into Tc cells		
26	Half-maximal IL-12 concentration for IL12-dependent	q_{dIL12}	
20	differentiation of naïve CD4 cells into Th1 cells		
97	Half-maximal IL-12 concentration for IL12-dependent	q_{gIL12}	
21	proliferation of Tc and NK cells		
28	Half-maximal IFN γ concentration for IFN $\gamma\text{-dependent}$	(Lana)	
20	differentiation of naïve CD4 cells into Th1 cells	<i>QIFN</i>	
20	Half-maximal IL-4 concentration for IL4-dependent	() 17 L	
29	differentiation of naïve CD4 cells into Th2 cells	$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	
30	Half-maximal IL-4 concentration for IL4-dependent	0	
	proliferation of Th2 cells	Qg1L4	
31	Half-maximal TGF- β concentration for TGF- β -dependent	aman	
51	differentiation of Treg cells	YI GF	

Parameter	Description	Mathematical
Number	Description	Representation
32	Half-maximal miR214 concentration for TDEV-dependent expansion of Tregs	q_{214}
33	Half-maximal HSP70 concentration for HSP70-dependent proliferation	q_{HSP70}
34	Half-maximal miR21 concentration for miR21-dependent expansion of cancer cells	q_{21}
35	Half-maximal Th1 cell population for naïve CD8 differentiation into Tc cells	q_1
36	Half-maximal IL-6 concentration for IL6-dependent production of IL-4 by Th2 cells	q_{IL6}
37	Half-maximal IFN γ concentration for IFN γ -dependent PD-L1 expression by cancer cells	$q_{IFN-PDL1}$
38	Half-maximal Treg population for Treg-dependent inhibition of IFN- γ production by Th1 cells and IL-4 production by Th2 cells	r_{Treg}
39	Half-maximal IFN- γ concentration for IFN- γ -dependent inhibition of Th2 proliferation	r_{IFN}
40	Half-maximal IL-4 concentration for IL4-dependent inhibition of IFN γ production by Th1 cells	r_{IL4}
41	Half-maximal IL-6 concentration for IL6-dependent inhibition of IFN γ production by Th1 cells	r_{IL6}
42	Half-maximal TGF- β concentration for inhibition of Th1 cells differentiation from naïve CD4 cells	r_{TGF}

Parameter	Description	Mathematical
Number	Description	Representation
/3	Half-maximal miR203 concentration for inhibition of	<i>°</i>
40	cancer cell-dependent maturation of dendritic cells	/ 203
44	Rate of TGF- β production by Treg cells	$p_{Treg-TGF}$
45	Rate of IFN- γ production by Th1 cells	p_{1-IFN}
46	Rate of IFN- γ production by Tc cells	p_{c-IFN}
47	Rate of IFN- γ production by NK cells	p_{NK-IFN}
48	Rate of IL6-independent production of IL-4 by Th2 cells	p_{2-4}
49	Rate of IL6-dependent production of IL-4 by Th2 cells	p_{2-4-6}
50	Rate of IL-6 production by Th2 cells	p_{2-6}
51	Rate of IL-6 production by dendritic cells	p_{DC-6}
52	Rate of IL-12 production by Th1 cells	p_{1-12}
53	Rate of IL-12 production by dendritic cells	p_{DC-12}
54	Rate of IL-12 production by Natural Killer cells	p_{NK-12}
55	Decay rate of TGF- β	δ_{TGF}
56	Decay rate of IFN- γ	δ_{IFN}
57	Decay rate of IL-6	δ_{IL6}
58	Decay rate of IL-4	δ_{IL4}
59	Decay rate of IL-12	δ_{IL12}
60	Decay rate of Nivolumab	δ_A
61	Decay rate of TDEVs	δ_{E_c}
62	Decay rate of miRNA21	δ_{m21}
63	Decay rate of miRNA214	δ_{m214}
64	Decay rate of miRNA203	δ_{m203}

Parameter	Description	Mathematical
Number	Description	Representation
65	Decay rate of HSP70	δ_{HSP70}
66	Death rate of naïve CD4 cells	$\delta_{T_{N4}}$
67	Death rate of naïve CD8 cells	$\delta_{T_{N8}}$
68	Death rate of Th1 cells	δ_{Th_1}
69	Death rate of Th2 cells	δ_{Th_2}
70	Death rate of Treg cells	$\delta_{T_{reg}}$
71	Death rate of Tc CD8 cells	δ_{T_c}
72	Death rate of NK cells	δ_{NK}
73	Death rate of DC cells	δ_{DC}
74	Death rate of cancer cells	δ_C
75	Per-cell expression level of PD-1	ρ
76	Per-cell expression level of PD-L1	λ
77	IFN- γ -dependent PD-L1 expression per cancer cell	$\lambda_{can-IFN}$
78	Production rate of TDEV miRNA21	$\lambda_{exo-m21}$
79	Production rate of TDEV miRNA214	$\lambda_{exo-m214}$
80	Production rate of TDEV miRNA203	$\lambda_{exo-m203}$
81	Production rate of TDEV PD-L1	$\lambda_{exo-PD-L1}$
82	Production rate of TDEV HSP70	$\lambda_{exo-HSP70}$
83	Rate of association of PD-1 and PD-L1	$\beta +$
84	Rate of dissociation of PD-1:PD-L1 complex	$\beta-$
85	Rate of association of Nivolumab:PD-1 complex	$\alpha +$
86	Rate of dissociation of Nivolumab:PD-1 complex	α-
87	Cancer cells saturation	k_{can}

Parameter	Description	Mathematical
Number	Description	Representation
88	DC saturation	k_{DC}
89	Treg saturation	$k_{T_{reg}}$
90	Degradation rate of TDEVs by cells	d_{deg}

Parameter	Nominal	Unite	Beforences
Number	Value	Onits	References
1	2.5×10^{-1}	day^{-1}	Smalley et al. ¹
2	3.5×10^{-1}	day^{-1}	Smalley et al. ¹
3	4.8×10^{-2}	day^{-1}	Smalley et al. ¹
4	4.8×10^{-2}	day^{-1}	Estimated from Smalley et al. ¹
5	1.0×10^{-4}	day^{-1}	Yin et al. ⁶
6	4.1×10^{-2}	day^{-1}	Smalley et al. ¹
7	7.0×10^{-2}	day^{-1}	Smalley et al. ¹
8	6.4×10^{-1}	day^{-1}	Estimated
9	3.8×10^{-2}	day^{-1}	Smalley et al. ¹
10	$3.5 imes 10^{-2}$	day^{-1}	Smalley et al. ¹
11	$3.6 imes 10^{-2}$	day^{-1}	Estimated from Friedman et al. 5
12	$2.0 imes 10^{-2}$	day^{-1}	Estimated from Friedman et al. 5
13	$8.0 imes 10^{-7}$	day^{-1}	Friedman et al. ⁵
14	$8.0 imes 10^{-7}$	day^{-1}	Estimated from Friedman et al. 5
15	$3.6 imes 10^{-2}$	day^{-1}	Smalley et al. ¹
16	$1.9 imes 10^{-1}$	day^{-1}	Smalley et al. ¹
17	$2.1 imes 10^{-2}$	day^{-1}	Smalley et al. ¹
18	2.5×10^{-4}	day^{-1}	Zheng et al. ⁵⁹
19	2.3×10^{-2}	day^{-1}	Smalley et al. ¹
20	1.1×10^{-5}	Tc $cell^{-1}.day^{-1}$	Smalley et al. ¹
21	1.1×10^{-5}	NK $cell^{-1}.day^{-1}$	Estimated from Smalley et al. ¹
22	4.9×10^1	pg/ml	Smalley et al. ¹
23	2.1	pg/ml	Smalley et al. ¹

Table 5: Nominal values of the kinetic parameters implemented in the model.

Parameter	Nominal	Unita	Deferences
Number	Value	Omts	References
24	2.0	pg/ml	Estimated from Smalley et al. ¹
25	1.9×10^1	pg/ml	Smalley et al. ¹
26	6.3×10^{-3}	pg/ml	Smalley et al. ¹
27	3.4×10^{-2}	pg/ml	Smalley et al. ¹
28	4.0×10^{-1}	pg/ml	Smalley et al. ¹
29	8.4×10^{-1}	pg/ml	Smalley et al. ¹
30	4.03	pg/ml	Smalley et al. ¹
31	4.0	pg/ml	Estimated from Friedman et al. ⁵
32	2.0	pg/ml	Estimated from Friedman et al. ⁵
33	2.0	pg/ml	Estimated from Friedman et al. ⁵
34	2.0	pg/ml	Friedman et al. ⁵
35	1.6×10^2	Th1 cells	Smalley et al. ¹
36	1.3×10^2	pg/ml	Smalley et al. ¹
37	6.3×10^{-1}	pg/ml	Smalley et al. ¹
38	2.3×10^3	Treg cells	Estimated from Pace et al. ⁵⁴
39	$8.9 imes 10^{-2}$	pg/ml	Smalley et al. ¹
40	$7.5 imes 10^{-1}$	pg/ml	Smalley et al. ¹
41	1.4×10^2	pg/ml	Smalley et al. ¹
42	1.0×10^{3}	pg/ml	Estimated from Takimoto et al. ⁶⁰
43	1.8	pg/ml	Estimated from Friedman et al. ⁵
44	1.25×10^{-3}	$rac{pg/ml}{Treg\ cells.day}$	Estimated from Takimoto et al. ⁶⁰
45	1.3×10^{-3}	$\frac{pg/ml}{Th1 \ cells.day}$	Smalley et al. ¹
46	6.2×10^{-4}	$\frac{pg/ml}{Tc \ cells.day}$	Estimated

Table 5 continued from previous page

Parameter	Nominal	Unita	Deferences
Number	Value	Omts	References
47	1.3×10^{-3}	$\frac{pg/ml}{NK \ cells.day}$	Estimated
48	3.7×10^{-6}	$rac{pg/ml}{Th2 cells.day}$	Smalley et al. ¹
49	1.6×10^{-4}	$rac{pg/ml}{Th2 cells.day}$	Smalley et al. ¹
50	1.1×10^{-1}	$rac{pg/ml}{Tccells.day}$	Smalley et al. ¹
51	2.2×10^{-2}	$rac{pg/ml}{DC\ cells.day}$	Dodge et al. ⁶¹
52	7.7×10^{-5}	$rac{pg/ml}{Th1 \ cells.day}$	Smalley et al. ¹
53	1.2×10^{-3}	$rac{pg/ml}{DC \ cells.day}$	Smalley et al. ¹
54	1.2×10^{-3}	$rac{pg/ml}{NK \; cells.day}$	Estimated
55	3.5×10^{-4}	min^{-1}	Menon et al. ⁶² - Kim et al. ⁶³
56	$\ln(2)/1000$	min^{-1}	Smalley et al. ¹
57	$\ln(2)/1000$	min^{-1}	Smalley et al. ¹
58	$7.0 imes 10^{-4}$	min^{-1}	Smalley et al. ¹
59	4.8×10^{-4}	min^{-1}	Smalley et al. ¹
60	4.8×10^{-2}	min^{-1}	Smalley et al. ¹
61	1.0×10^4	min^{-1}	Estimated
62	1.5	day^{-1}	Friedman et al. ⁵
63	1.5	day^{-1}	Estimated from Friedman et al. 5
64	1.5	day^{-1}	Friedman et al. ⁵
65	1.5	day^{-1}	Estimated from Friedman et al. 5
66	1.0×10^{-2}	day^{-1}	Estimated from Smalley et al. ¹
67	1.0×10^{-2}	day^{-1}	Estimated from Smalley et al. ¹
68	1.2×10^{-2}	day^{-1}	Estimated from Smalley et al. ¹
69	1.2×10^{-2}	day^{-1}	Smalley et al. ¹

Table 5 continued from previous page

Parameter	Nominal	TT:+-	Deferment
Number	Value	Units	References
70	1.2×10^{-2}	day^{-1}	Estimated from Smalley et al. ¹
71	1.2×10^{-2}	day^{-1}	Estimated from Smalley et al. ¹
72	1.2×10^{-2}	day^{-1}	Estimated from Smalley et al. ¹
73	1.2×10^{-2}	day^{-1}	Estimated from Smalley et al. ¹
74	1.7×10^{-1}	day^{-1}	Friedman et al. ⁵
75	9.9	$rac{pg/ml}{T \ cells}$	Smalley et al. ¹
76	1.0×10^1	$rac{pg/ml}{cells}$	Smalley et al. ¹
77	1.8×10^{-4}	$\frac{pg/ml}{cancer \ cells}$	Smalley et al. ¹
78	3.8	day^{-1}	Estimated from Friedman et al. ⁵
79	1	day^{-1}	Estimated from Friedman et al. ⁵
80	1.32	day^{-1}	Friedman et al. ⁵
81	50	day^{-1}	Chen et al. ⁵⁵
82	1	day^{-1}	Estimated from Friedman et al. ⁵
83	8.43×10^{-4}	$\left(\left(pg/ml\right).day ight)^{-1}$	Smalley et al. ¹
84	700	day^{-1}	Smalley et al. ¹
85	1.4×10^{-1}	$\left(\left(pg/ml ight).day ight)^{-1}$	Smalley et al. ¹
86	$7.0 imes 10^{-4}$	$\left(\left(pg/ml\right).day ight)^{-1}$	Smalley et al. ¹
87	4.5×10^8	Cancer cells	Friedman et al. ⁵
88	23	$DC \ cells$	Friedman et al. ⁵
89	1.6×10^{3}	Treg cells	Friedman et al. ⁵
90	21.8	day^{-1}	Friedman et al. ⁵

Table 5 continued from previous page

References

- Smalley, M. et al. Integrating Systems Biology and an Ex Vivo Human Tumor Model Elucidates PD-1 Blockade Response Dynamics. *iScience* 2020, 23, 101229.
- (2) Giles, B. M.; Underwood, T. T.; Benhadji, K. A.; Nelson, D. K. S.; Grobeck, L. M.; Lin, B.; Wang, S.; Fill, J. A.; Man, M.; Pitts, K. R.; Bamberg, A. Analytical Characterization of an Enzyme-Linked Immunosorbent Assay for the Measurement of Transforming Growth Factor β1 in Human Plasma. *The journal of applied laboratory medicine* **2018**, *3*, 200–212.
- (3) Hawinkels, L. J. A. C.; Verspaget, H. W.; van Duijn, W.; van der Zon, J. M.; Zuidwijk, K.; Kubben, F. J. G. M.; Verheijen, J. H.; Hommes, D. W.; Lamers, C. B. H. W.; Sier, C. F. M. Tissue level, activation and cellular localisation of TGF-β1 and association with survival in gastric cancer patients. *British Journal of Cancer* 2007, 97, 398–404.
- (4) Kohla, M. A. S.; Attia, A.; Darwesh, N.; Obada, M.; Taha, H.; Youssef, M. F. Association of serum levels of transforming growth factor β1 with disease severity in patients with hepatocellular carcinoma. *Hepatoma Research* 2017, *3*, 294–301.
- (5) Friedman, A.; Hao, W. The Role of Exosomes in Pancreatic Cancer Microenvironment. Bulletin of Mathematical Biology 2018, 80, 1111–1133.
- (6) Yin, Y. et al. Tumor-secreted miR-214 induces regulatory T cells: a major link between immune evasion and tumor growth. *Cell Research* 2014, 24, 1164–1180.
- (7) Chanteloup, G. et al. Monitoring HSP70 exosomes in cancer patients' follow up: a clinical prospective pilot study. *Journal of Extracellular Vesicles* 2020, 9, 1766192.
- (8) Bindea, G. et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. *Immunity* 2013, 39, 782–795.

- (9) Stankovic, B.; Bjørhovde, H. A. K.; Skarshaug, R.; Aamodt, H.; Frafjord, A.; Müller, E.; Hammarström, C.; Beraki, K.; Bækkevold, E. S.; Woldbæk, P. R.; Helland, Å.; Brustugun, O. T.; Øynebråten, I.; Corthay, A. Immune Cell Composition in Human Non-small Cell Lung Cancer. *Frontiers in immunology* **2018**, *9*, 3101.
- (10) Samlowski, W.; Robert, N. J.; Chen, L.; Schenkel, B.; Davis, C.; Moshyk, A.; Kotapati, S.; Poretta, T.; Weber, J. S. Real-World nivolumab dosing patterns and safety outcomes in patients receiving adjuvant therapy for melanoma. *Cancer Medicine* 2022, n/a.
- (11) Gorham, J. D.; Güler, M. L.; Fenoglio, D.; Gubler, U.; Murphy, K. M. Low Dose TGFβ Attenuates IL-12 Responsiveness in Murine Th Cells. *The Journal of Immunology* 1998, 161, 1664–1670.
- (12) Gorelik, L.; Constant, S.; Flavell, R. A. Mechanism of transforming growth factor beta-induced inhibition of T helper type 1 differentiation. *The Journal of experimental medicine* **2002**, *195*, 1499–1505.
- (13) Travis, M. A.; Sheppard, D. TGF-β Activation and Function in Immunity. Annual Review of Immunology 2014, 32, 51–82.
- (14) Okazaki, T.; Honjo, T. The PD-1-PD-L pathway in immunological tolerance. Trends in immunology 2006, 27, 195–201.
- (15) Sznol, M.; Chen, L. Antagonist antibodies to PD-1 and B7-H1 (PD-L1) in the treatment of advanced human cancer. *Clinical cancer research : an official journal of the American Association for Cancer Research* 2013, 19, 1021–1034.
- (16) Freeman, G. J.; Wherry, E. J.; Ahmed, R.; Sharpe, A. H. Reinvigorating exhausted HIV-specific T cells via PD-1-PD-1 ligand blockade. *The Journal of experimental medicine* **2006**, 203, 2223–2227.

- (17) Chen, W.; Jin, W.; Hardegen, N.; Lei, K.-J.; Li, L.; Marinos, N.; McGrady, G.; Wahl, S. M. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. *The Journal of experimental medicine* **2003**, *198*, 1875–1886.
- (18) Fantini, M. C.; Becker, C.; Monteleone, G.; Pallone, F.; Galle, P. R.; Neurath, M. F. Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25- T cells through Foxp3 induction and down-regulation of Smad7. *Journal of immunology (Baltimore, Md. : 1950)* **2004**, *172*, 5149–5153.
- (19) Francisco, L. M.; Salinas, V. H.; Brown, K. E.; Vanguri, V. K.; Freeman, G. J.; Kuchroo, V. K.; Sharpe, A. H. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. *Journal of Experimental Medicine* **2009**, *206*, 3015–3029.
- (20) Bettelli, E.; Carrier, Y.; Gao, W.; Korn, T.; Strom, T. B.; Oukka, M.; Weiner, H. L.; Kuchroo, V. K. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. *Nature* **2006**, *441*, 235–238.
- (21) Diehl, S.; Rincón, M. The two faces of IL-6 on Th1/Th2 differentiation. Molecular immunology 2002, 39, 531–536.
- (22) Yates, A.; Bergmann, C.; Van Hemmen, J. L.; Stark, J.; Callard, R. Cytokinemodulated regulation of helper T cell populations. *Journal of theoretical biology* 2000, 206, 539–560.
- (23) Fishman, M. A.; Perelson, A. S. Th1/Th2 cross regulation. Journal of theoretical biology 1994, 170, 25–56.
- (24) Ridge, J. P.; Di Rosa, F.; Matzinger, P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. *Nature* **1998**, *393*, 474–478.

- (25) Sakaguchi, S. Regulatory T cells: key controllers of immunologic self-tolerance. *Cell* **2000**, 101, 455–458.
- (26) Lasek, W.; Zagożdżon, R.; Jakobisiak, M. Interleukin 12: still a promising candidate for tumor immunotherapy? *Cancer immunology, immunotherapy : CII* 2014, 63, 419–435.
- (27) Okamura, H.; Kashiwamura, S.; Tsutsui, H.; Yoshimoto, T.; Nakanishi, K. Regulation of interferon-gamma production by IL-12 and IL-18. *Current opinion in immunology* 1998, 10, 259–264.
- (28) Fang, H.; Ang, B.; Xu, X.; Huang, X.; Wu, Y.; Sun, Y.; Wang, W.; Li, N.; Cao, X.; Wan, T. TLR4 is essential for dendritic cell activation and anti-tumor T-cell response enhancement by DAMPs released from chemically stressed cancer cells. *Cellular & molecular immunology* **2014**, *11*, 150–159.
- (29) Saenz, R.; Futalan, D.; Leutenez, L.; Eekhout, F.; Fecteau, J. F.; Sundelius, S.; Sundqvist, S.; Larsson, M.; Hayashi, T.; Minev, B.; Carson, D.; Esener, S.; Messmer, B.; Messmer, D. TLR4-dependent activation of dendritic cells by an HMGB1-derived peptide adjuvant. *Journal of translational medicine* **2014**, *12*, 211.
- (30) Zhou, M.; Chen, J.; Zhou, L.; Chen, W.; Ding, G.; Cao, L. Pancreatic cancer derived exosomes regulate the expression of TLR4 in dendritic cells via miR-203. *Cellular immunology* **2014**, *292*, 65–69.
- (31) Fang, H.; Wu, Y.; Huang, X.; Wang, W.; Ang, B.; Cao, X.; Wan, T. Toll-like receptor 4 (TLR4) is essential for Hsp70-like protein 1 (HSP70L1) to activate dendritic cells and induce Th1 response. *The Journal of biological chemistry* **2011**, *286*, 30393–30400.
- (32) Wang, H.; Tan, Z.; Hu, H.; Liu, H.; Wu, T.; Zheng, C.; Wang, X.; Luo, Z.; Wang, J.; Liu, S.; Lu, Z.; Tu, J. microRNA-21 promotes breast cancer proliferation and metastasis by targeting LZTFL1. *BMC Cancer* **2019**, *19*, 738.

- (33) Sun, L.-H.; Tian, D.; Yang, Z.-C.; Li, J.-L. Exosomal miR-21 promotes proliferation, invasion and therapy resistance of colon adenocarcinoma cells through its target PDCD4. *Scientific reports* **2020**, *10*, 8271.
- (34) Li, L.; Li, C.; Wang, S.; Wang, Z.; Jiang, J.; Wang, W.; Li, X.; Chen, J.; Liu, K.; Li, C.; Zhu, G. Exosomes Derived from Hypoxic Oral Squamous Cell Carcinoma Cells Deliver miR-21 to Normoxic Cells to Elicit a Prometastatic Phenotype. *Cancer Research* 2016, 76, 1770–1780.
- (35) Prager, I.; Watzl, C. Mechanisms of natural killer cell-mediated cellular cytotoxicity. Journal of leukocyte biology 2019, 105, 1319–1329.
- (36) Wiedemann, A.; Depoil, D.; Faroudi, M.; Valitutti, S. Cytotoxic T lymphocytes kill multiple targets simultaneously via spatiotemporal uncoupling of lytic and stimulatory synapses. *Proceedings of the National Academy of Sciences* **2006**, *103*, 10985–10990.
- (37) Piccirillo, C. A.; Letterio, J. J.; Thornton, A. M.; McHugh, R. S.; Mamura, M.; Mizuhara, H.; Shevach, E. M. CD4+CD25+ Regulatory T Cells Can Mediate Suppressor Function in the Absence of Transforming Growth Factor β1 Production and Responsiveness . Journal of Experimental Medicine 2002, 196, 237–246.
- (38) Prud'homme, G. J.; Piccirillo, C. A. The Inhibitory Effects of Transforming Growth Factor-Beta-1 (TGF-β1) in Autoimmune Diseases. *Journal of Autoimmunity* 2000, 14, 23–42.
- (39) Li, M. O.; Wan, Y. Y.; Flavell, R. A. T cell-produced transforming growth factor-beta1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. *Immunity* 2007, 26, 579–591.
- (40) Tran, D. Q. TGF-β: the sword, the wand, and the shield of FOXP3+ regulatory T cells. Journal of Molecular Cell Biology 2012, 4, 29–37.

- (41) Weiner, H. L. Induction and mechanism of action of transforming growth factor-betasecreting Th3 regulatory cells. *Immunological reviews* 2001, 182, 207–214.
- (42) Fishman, M. A.; Perelson, A. S. Th1/Th2 differentiation and cross-regulation. Bulletin of mathematical biology 1999, 61, 403–436.
- (43) Sojka, D. K.; Fowell, D. J. Regulatory T cells inhibit acute IFN-γ synthesis without blocking T-helper cell type 1 (Th1) differentiation via a compartmentalized requirement for IL-10. Proceedings of the National Academy of Sciences 2011, 108, 18336 LP – 18341.
- (44) Sojka, D. K.; Huang, Y.-H.; Fowell, D. J. Mechanisms of regulatory T-cell suppression

 a diverse arsenal for a moving target. *Immunology* 2008, 124, 13–22.
- (45) Ahmadzadeh, M.; Rosenberg, S. A. TGF-beta 1 attenuates the acquisition and expression of effector function by tumor antigen-specific human memory CD8 T cells. *Journal of immunology (Baltimore, Md. : 1950)* **2005**, *174*, 5215–5223.
- (46) Laouar, Y.; Sutterwala, F. S.; Gorelik, L.; Flavell, R. A. Transforming growth factorbeta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma. *Nature immunology* **2005**, *6*, 600–607.
- (47) Thomas, D. A.; Massagué, J. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. *Cancer cell* 2005, *8*, 369–380.
- (48) Bellone, G.; Aste-Amezaga, M.; Trinchieri, G.; Rodeck, U. Regulation of NK cell functions by TGF-beta 1. Journal of immunology (Baltimore, Md. : 1950) 1995, 155, 1066–1073.
- (49) Hunter, C. A.; Bermudez, L.; Beernink, H.; Waegell, W.; Remington, J. S. Transforming growth factor- β inhibits interleukin-12-induced production of interferon- γ by

natural killer cells: A role for transforming growth factor- β in the regulation of T cellindependent resistance to Toxoplasma gondii. *European Journal of Immunology* **1995**, 25, 994–1000.

- (50) Ghiringhelli, F. et al. CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. The Journal of experimental medicine 2005, 202, 1075–1085.
- (51) Multhoff, G.; Mizzen, L.; Winchester, C. C.; Milner, C. M.; Wenk, S.; Eissner, G.; Kampinga, H. H.; Laumbacher, B.; Johnson, J. Heat shock protein 70 (Hsp70) stimulates proliferation and cytolytic activity of natural killer cells. *Experimental hematology* 1999, 27, 1627–1636.
- (52) Gastpar, R.; Gehrmann, M.; Bausero, M. A.; Asea, A.; Gross, C.; Schroeder, J. A.; Multhoff, G. Heat Shock Protein 70 Surface-Positive Tumor Exosomes Stimulate Migratory and Cytolytic Activity of Natural Killer Cells. *Cancer Research* 2005, 65, 5238 LP – 5247.
- (53) Yang, Z.-Z.; Novak, A. J.; Stenson, M. J.; Witzig, T. E.; Ansell, S. M. Intratumoral CD4+CD25+ regulatory T-cell-mediated suppression of infiltrating CD4+ T cells in B-cell non-Hodgkin lymphoma. *Blood* 2006, 107, 3639–3646.
- (54) Pace, L.; Pioli, C.; Doria, G. IL-4 modulation of CD4+CD25+ T regulatory cellmediated suppression. Journal of immunology (Baltimore, Md. : 1950) 2005, 174, 7645-7653.
- (55) Chen, G. et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. *Nature* 2018, 560, 382–386.
- (56) Xie, F.; Xu, M.; Lu, J.; Mao, L.; Wang, S. The role of exosomal PD-L1 in tumor progression and immunotherapy. *Molecular Cancer* **2019**, *18*, 146.

- (57) Fabbri, M. et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proceedings of the National Academy of Sciences of the United States of America 2012, 109, E2110–6.
- (58) Shi, R.; Wang, P.-Y.; Li, X.-Y.; Chen, J.-X.; Li, Y.; Zhang, X.-Z.; Zhang, C.-G.; Jiang, T.; Li, W.-B.; Ding, W.; Cheng, S.-J. Exosomal levels of miRNA-21 from cerebrospinal fluids associated with poor prognosis and tumor recurrence of glioma patients. *Oncotarget* **2015**, *6*, 26971–26981.
- (59) Zheng, S. G.; Wang, J.; Wang, P.; Gray, J. D.; Horwitz, D. A. IL-2 is essential for TGF-beta to convert naive CD4+CD25- cells to CD25+Foxp3+ regulatory T cells and for expansion of these cells. *Journal of immunology (Baltimore, Md. : 1950)* **2007**, *178*, 2018–2027.
- (60) Takimoto, T.; Wakabayashi, Y.; Sekiya, T.; Inoue, N.; Morita, R.; Ichiyama, K.; Takahashi, R.; Asakawa, M.; Muto, G.; Mori, T.; Hasegawa, E.; Saika, S.; Hara, T.; Nomura, M.; Yoshimura, A. Smad2 and Smad3 are redundantly essential for the TGF-beta-mediated regulation of regulatory T plasticity and Th1 development. Journal of immunology (Baltimore, Md. : 1950) 2010, 185, 842–855.
- (61) Dodge, I. L.; Carr, M. W.; Cernadas, M.; Brenner, M. B. IL-6 Production by Pulmonary Dendritic Cells Impedes Th1 Immune Responses. *The Journal of Immunology* 2003, 170, 4457 LP – 4464.
- (62) Menon, S. N.; Flegg, J. A.; McCue, S. W.; Schugart, R. C.; Dawson, R. A.; McElwain, D. L. S. Modelling the interaction of keratinocytes and fibroblasts during normal and abnormal wound healing processes. *Proceedings. Biological sciences* **2012**, *279*, 3329–3338.
- (63) Kim, Y.; Lee, D.; Lee, J.; Lee, S.; Lawler, S. Role of tumor-associated neutrophils in

regulation of tumor growth in lung cancer development: A mathematical model. *PloS* one **2019**, 14, e0211041.