Electronic Supplementary Information

Halide Exchange Mediated Cation Exchange Facilitates Room Temperature Co-doping of d-and f-Block Elements in Cesium Lead Halide Perovskite Nanoparticles

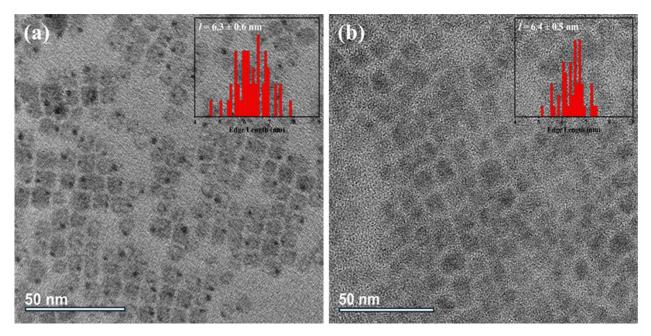
Jomy Jose Philip,¹ Gouranga H. Debnath^{1*} David H. Waldeck,^{2,3*} and R. Geetha Balakrishna,^{1*}

¹Centre for Nano and Material Sciences, Jain University, Bangalore, Karnataka 562112, India

²Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA

³Petersen Institute of NanoScience and Engineering, University of Pittsburgh,

Pittsburgh, Pennsylvania 15261, USA


E-mail: gouranga.debnath@jainuniversity.ac.in, gouranga0430@gmail.com (Gouranga H. Debnath)

dave@pitt.edu (David H. Waldeck)

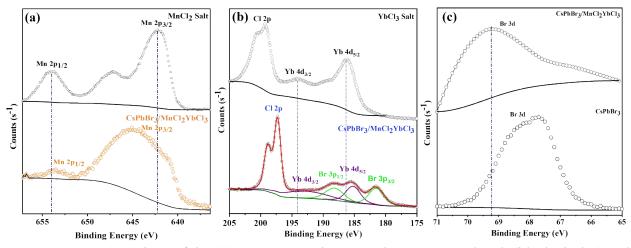

br.geetha@jainuniversity.ac.in (R. Geetha Balakrishna)
*To whom the correspondence should be addressed

Table of Contents

Figure S1. TEM images of (a) CsPbBr ₃ NPs and (b) CsPbBr ₃ /MnCl ₂ YbCl ₃ NPs are shown along with their size distributions (inset).
Figure S2. A comparison of the (a) Mn 2p XPS signatures between MnCl ₂ salt (black circles) and CsPbBr ₃ /MnCl ₂ YbCl ₃ NPs (orange circles), (b) Yb 4d XPS signatures between YbCl ₃ salt (black circles) and CsPbBr ₃ /MnCl ₂ YbCl ₃ NPs (fitted with purple solid line) and Br 3d XPS between CsPbBr ₃ NPs and
CsPbBr ₃ /MnCl ₂ YbCl ₃ NPs are shown. The dotted lines in panels a-c indicate the shift in the binding energies between the different systems. The black solid lines denote the baseline. In panel b, the spectrum
is shown in black circles and the envelope of the fit is shown in red solid line
Figure S3. EDS signatures of (a) CsPbBr ₃ NPs and (b) CsPbBr ₃ /MnCl ₂ YbCl ₃ NPs are shown4 Figure S4. Emission decay profiles of CsPbBr ₃ NPs (green) and CsPbBr ₃ /MnCl ₂ YbCl ₃ NPs (blue) are
shown. The NPs were dispersed in toluene for acquiring the spectra
Figure S5. Mn ²⁺ (left) and Yb ³⁺ (right) emission decay profiles in CsPbBr ₃ /MnCl ₂ YbCl ₃ NPs are shown.
The NPs were dispersed in toluene for acquiring the spectrum
Figure S6. TEM images of (a) CsPbCl ₃ NPs and (b) CsPbCl ₃ /MnCl ₂ YbCl ₃ NPs are shown along with their size distributions (inset)
Figure S7. A comparison of the (a) Mn 2p XPS signatures between MnCl ₂ salt (black circles) and
CsPbCl ₃ /MnCl ₂ YbCl ₃ NPs (orange circles) and (b) Yb 4d XPS signatures between YbCl ₃ salt (black circles)
and CsPbCl ₃ /MnCl ₂ YbCl ₃ NPs (fitted with purple solid line) are shown. The dotted lines in panels a-b
indicate the shift in the binding energies between the precursors and the NPs. The black solid lines denote
the baseline. In panel b, the spectrum is shown in black circles and the envelope of the fit is shown in red
solid line
Figure S8. EDS signatures of (a) CsPbCl ₃ NPs and (b) CsPbCl ₃ /MnCl ₂ YbCl ₃ NPs are shown
Figure S10. Mn ²⁺ (left) and Yb ³⁺ (right) emission decay profile in CsPbCl ₃ /MnCl ₂ YbCl ₃ NPs are shown.
The NPs were dispersed in toluene for acquiring the spectrum
Figure S11. XRD patterns of the CsPbCl ₃ and the CsPbCl ₃ /EuCl ₃ TbCl ₃ NPs are shown
Figure S12. EDS signature of CsPbCl ₃ /EuCl ₃ TbCl ₃ NPs is shown10
Figure S13. UV-vis absorption and steady-state emission spectra of CsPbCl ₃ /EuCl ₃ TbCl ₃ NPs are shown.
Figure S14. Eu ³⁺ and Tb ³⁺ decay profiles in EuCl ₃ TbCl ₃ NPs are shown
Figure S15. Excitation spectra of the $LnCl_3.6H_2O$ [Ln = Eu, Tb] in water is shown. For EuCl_3.6H_2O, the spectrum from 300-330 nm is broken to remove the contribution of the harmonic from the excitation source.
spectrum from 500-550 mm is broken to remove the contribution of the narmonic from the excitation source.
Table S1. Atomic percentages of the different elements are shown
Table S2. Lifetime parameters of the different NPs. ¹
Table S3. Mn ²⁺ and Yb ³⁺ lifetime parameters of the different NPs. ¹ S6
Table S4. Ln^{3+} ($Ln = Eu$, Tb) lifetime parameters of the different NPs. ¹ S12

Figure S1. TEM images of (a) CsPbBr₃ NPs and (b) CsPbBr₃/MnCl₂YbCl₃ NPs are shown along with their size distributions (inset).

Figure S2. A comparison of the (a) Mn 2p XPS signatures between MnCl₂ salt (black circles) and CsPbBr₃/MnCl₂YbCl₃ NPs (orange circles), (b) Yb 4d XPS signatures between YbCl₃ salt (black circles) and CsPbBr₃/MnCl₂YbCl₃ NPs (fitted with purple solid line) and Br 3d XPS between CsPbBr₃ NPs and CsPbBr₃/MnCl₂YbCl₃ NPs (fitted with purple solid line) in panels a-c indicate the shift in the binding energies between the different systems. The black solid lines denote the baseline. In panel b, the spectrum is shown in black circles and the envelope of the fit is shown in red solid line.

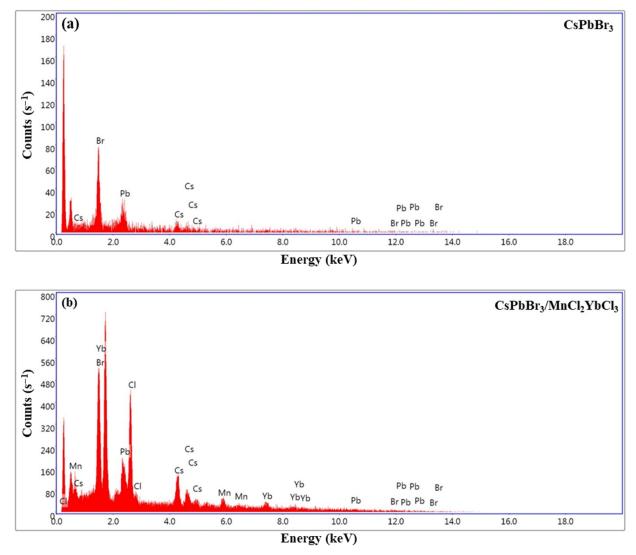
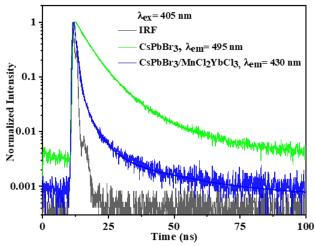



Figure S3. EDS signatures of (a) CsPbBr₃ NPs and (b) CsPbBr₃/MnCl₂YbCl₃ NPs are shown.

System	Cs	Pb	Br	Cl	Mn	Yb		
CsPbBr ₃	17.7	18.9	63.4					
CsPbBr ₃ /MnCl ₂ YbCl ₃	16.7	5.5	5.7	53.3	9.3	9.5		
CsPbCl ₃	18.1	16.3		65.6				
CsPbCl ₃ /MnCl ₂ YbCl ₃	13.2	11.3		67.4	4.7	3.4		
	Cs	Pb	Br	Cl	Eu	Tb		
CsPbCl ₃ /EuCl ₃ TbCl ₃	15.2	6.3		65.7	6.3	6.5		

Table S1. Atomic percentages of the different elements are shown.

An error of $\sim 10\%$ is encountered while calculating the atomic percentage.



Figure S4. Emission decay profiles of CsPbBr₃ NPs (green) and CsPbBr₃/MnCl₂YbCl₃ NPs (blue) are shown. The NPs were dispersed in toluene for acquiring the spectra.

Table 52. Effetime parameters of the different for s.							
System	a ₁	$\tau_1(ns)$	\mathbf{a}_2	$\tau_2(ns)$	a 3	$\tau_3(ns)$	<τ>(ns)
CsPbBr ₃	$0.65 \pm$	$0.44 \pm$	$0.32 \pm$	$5.10 \pm$	$0.03 \pm$	17.36	2.44 ±
$\lambda_{\rm em} = 495 \ \rm nm$	0.07	0.03	0.02	0.43	0.002	±1.50	0.22
CsPbBr ₃ /MnCl ₂ YbCl ₃	$0.93 \pm$	$0.72 \pm$	$0.06 \pm$	$2.80 \pm$	$0.01 \pm$	$15.20 \pm$	$0.98 \pm$
$\lambda_{\rm em} = 430 \ \rm nm$	0.08	0.12	0.01	0.10	0.001	2.20	0.20
CsPbCl ₃	$0.95 \pm$	$0.94 \pm$	$0.04 \pm$	$5.10 \pm$	$0.01 \pm$	$24.0 \pm$	1.33 ±
$\lambda_{\rm em} = 430 \ \rm nm$	0.01	0.04	0.007	0.42	0.002	4.4	0.14
CsPbCl ₃ /MnCl ₂ YbCl ₃	0.93 ±	$0.96 \pm$	$0.06 \pm$	$5.10 \pm$	$0.01 \pm$	$30.36 \pm$	$1.50 \pm$
$\lambda_{\rm em} = 430 \ \rm nm$	0.01	0.04	0.005	0.60	0.001	0.40	0.16

Table S2. Lifetime parameters of the different NPs.¹

¹The decays are fitted to a multiexponential model using the equation $I(t) = \sum a_i \exp(-t/\tau)$, where $\sum a_i = 1$ and $\langle \tau \rangle = a_1 \tau_1 + a_2 \tau_2 + a_3 \tau_3$ with τ_1 , τ_2 , and τ_3 being the three lifetime components having relative amplitudes a_1 , a_2 , and a_3 respectively. $\chi^2 \le 1.2$

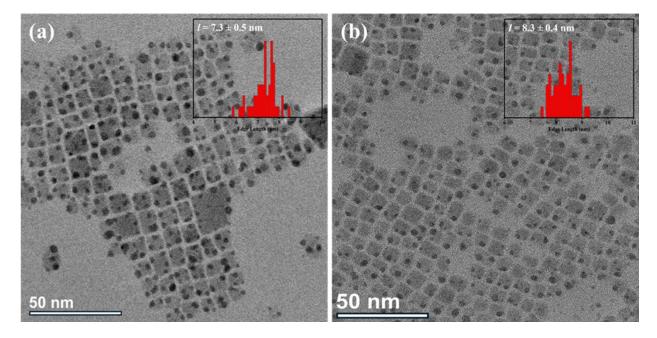


Figure S5. Mn²⁺ (left) and Yb³⁺ (right) emission decay profiles in CsPbBr₃/MnCl₂YbCl₃ NPs are shown. The NPs were dispersed in toluene for acquiring the spectrum.

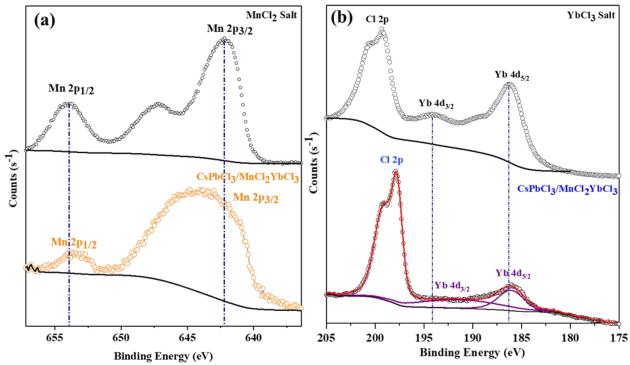

System	a 1	$\tau_1(ms)$	a ₂	$\tau_2(ms)$	<\(\tau>)			
CsPbBr ₃ /MnCl ₂ YbCl ₃	0.20 ± 0.01	0.30 ± 0.01	0.80 ± 0.01	1.10 ± 0.10	0.94 ± 0.08			
$\lambda_{\rm em} = 600 \ \rm nm$								
CsPbBr ₃ /MnCl ₂ YbCl ₃	0.43 ± 0.04	$0.047 \pm$	0.57 ± 0.06	0.82 ± 0.07	0.49 ± 0.05			
$\lambda_{\rm em} = 984 \ \rm nm$		0.005						
CsPbCl ₃ /MnCl ₂ YbCl ₃	0.28 ± 0.02	0.21 ± 0.01	0.72 ± 0.06	1.2 ± 0.10	0.92 ± 0.09			
$\lambda_{\rm em} = 600 \ \rm nm$								
CsPbCl ₃ /MnCl ₂ YbCl ₃	0.30 ± 0.02	0.07 ± 0.006	0.70 ± 0.05	0.94 ± 0.80	0.68 ± 0.06			
$\lambda_{\rm em} = 984 \ \rm nm$								

Table S3. Mn²⁺ and Yb³⁺ lifetime parameters of the different NPs.¹

¹The decays are fitted to a multiexponential model using the equation $I(t) = \sum a_i \exp(-t/\tau)$, where $\sum a_i = 1$ and $<\tau > = a_1\tau_1 + a_2\tau_2$ with τ_1 and τ_2 being the two lifetime components having relative amplitudes a_1 and a_2 respectively. $\chi^2 \le 1.3$

Figure S6. TEM images of (a) CsPbCl₃ NPs and (b) CsPbCl₃/MnCl₂YbCl₃ NPs are shown along with their size distributions (inset).

Figure S7. A comparison of the (a) Mn 2p XPS signatures between MnCl₂ salt (black circles) and CsPbCl₃/MnCl₂YbCl₃ NPs (orange circles) and (b) Yb 4d XPS signatures between YbCl₃ salt (black circles) and CsPbCl₃/MnCl₂YbCl₃ NPs (fitted with purple solid line) are shown. The dotted lines in panels a-b indicate the shift in the binding energies between the precursors and the NPs. The black solid lines denote the baseline. In panel b, the spectrum is shown in black circles and the envelope of the fit is shown in red solid line.

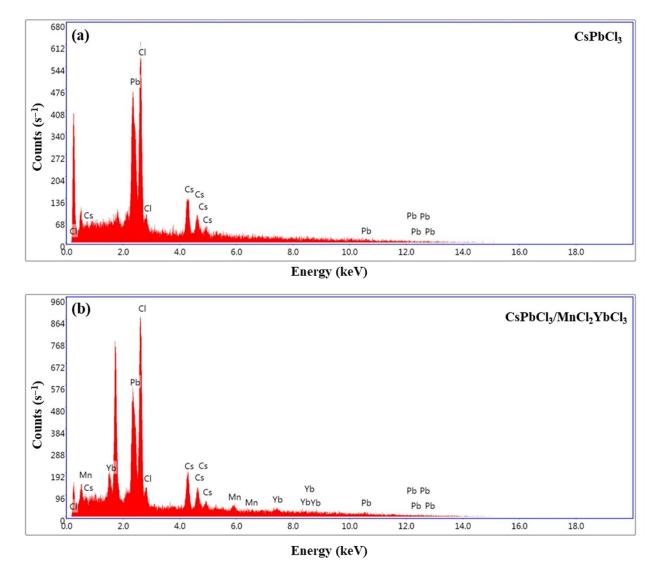
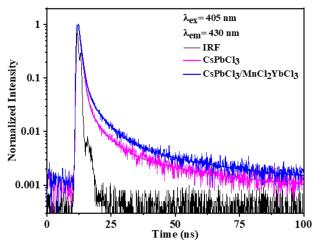
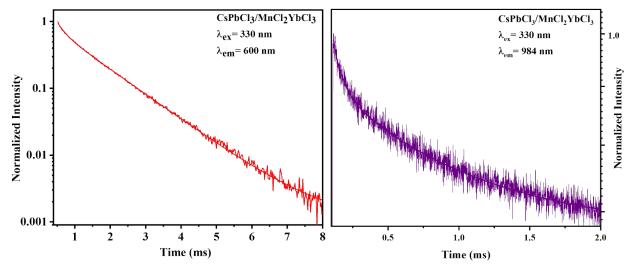




Figure S8. EDS signatures of (a) CsPbCl₃ NPs and (b) CsPbCl₃/MnCl₂YbCl₃ NPs are shown.

Figure S9. Emission decay profiles of CsPbCl₃ NPs (magenta) and CsPbCl₃/MnCl₂YbCl₃ NPs (blue) are shown. The NPs were dispersed in toluene for acquiring the spectra.

Figure S10. Mn²⁺ (left) and Yb³⁺ (right) emission decay profile in CsPbCl₃/MnCl₂YbCl₃ NPs are shown. The NPs were dispersed in toluene for acquiring the spectrum.

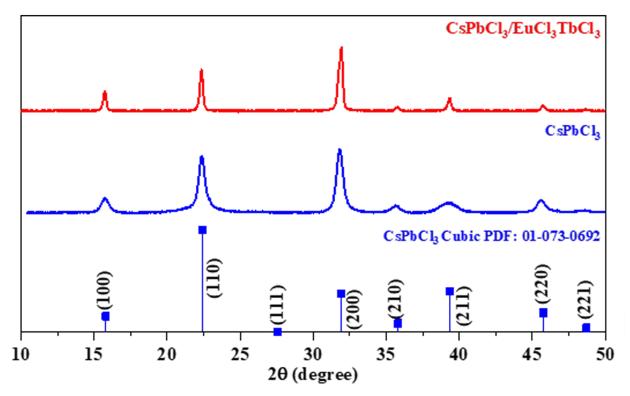


Figure S11. XRD patterns of the CsPbCl₃ and the CsPbCl₃/EuCl₃TbCl₃ NPs are shown.

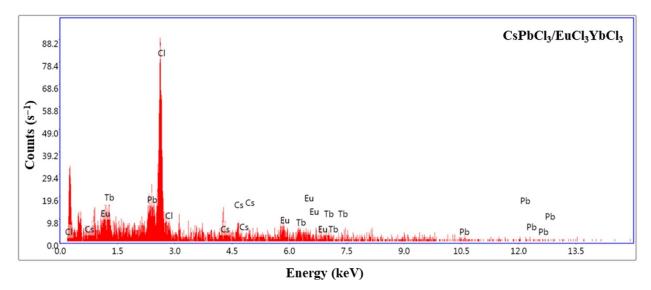
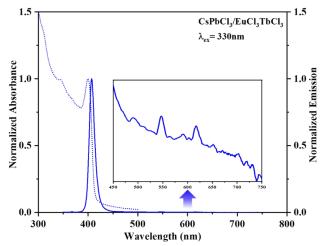



Figure S12. EDS signature of CsPbCl₃/EuCl₃TbCl₃ NPs is shown.

Figure S13. UV-vis absorption and steady-state emission spectra of CsPbCl₃/EuCl₃TbCl₃ NPs are shown.

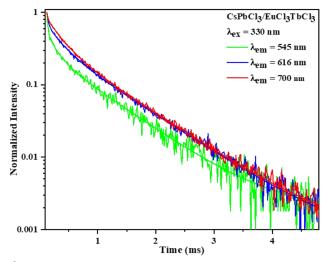
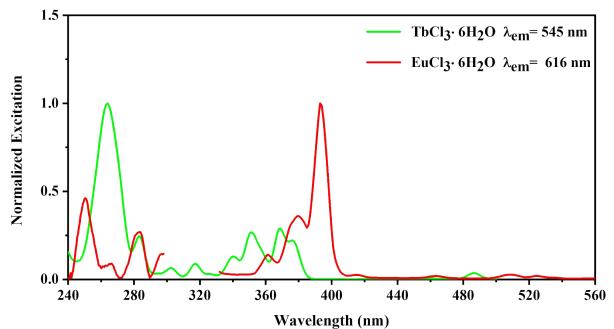



Figure S14. Eu³⁺ and Tb³⁺ decay profiles in EuCl₃TbCl₃ NPs are shown.

System	a ₁	$\tau_1(ms)$	a ₂	$\tau_2(ms)$	a ₃	τ ₃ (ms)	<τ>(ms)
CsPbCl ₃ /EuCl ₃ TbCl ₃	$0.68 \pm$	$0.03 \pm$	0.17 ±	0.19 ±	0.15 ±	0.83 ±	0.18 ±
$\lambda_{\rm em} = 545 \ \rm nm$	0.04	0.007	0.01	0.04	0.02	0.08	0.04
CsPbCl ₃ /EuCl ₃ TbCl ₃	0.49 ±	$0.03 \pm$	0.25 ±	$0.20 \pm$	0.26 ±	$0.80 \pm$	0.26 ±
$\lambda_{\rm em} = 616 \ \rm nm$	0.04	0.004	0.03	0.03	0.03	0.09	0.05
CsPbCl ₃ /EuCl ₃ TbCl ₃	$0.44 \pm$	$0.02 \pm$	0.33 ±	0.23 ±	0.23 ±	$0.80 \pm$	$0.27 \pm$
$\lambda_{\rm em} = 700 \ \rm nm$	0.05	0.003	0.03	0.02	0.02	0.07	0.04

Table S4. Ln^{3+} (Ln = Eu, Tb) lifetime parameters of the different NPs.¹

¹The decays are fitted to a multiexponential model using the equation $I(t) = \sum a_i \exp(-t/\tau)$, where $\sum a_i = 1$ and $\langle \tau \rangle = a_1 \tau_1 + a_2 \tau_2 + a_3 \tau_3$ with τ_1 , τ_2 , and τ_3 being the three lifetime components having relative amplitudes a_1 , a_2 , and a_3 respectively. $\chi^2 \le 1.3$

Figure S15. Excitation spectra of the $LnCl_{3.6}H_{2}O$ [Ln = Eu, Tb] in water is shown. For EuCl_{3.6}H_{2}O, the spectrum from 300-330 nm is broken to remove the contribution of the harmonic from the excitation source.