Supporting Information

Experimental and theoretical section

Materials: Cobalt nitrate hexahydrate (Co(NO₃)₂·6H₂O, \geq 99.0%), Ammonium fluoride (NH₄F, \geq 99.0%), Urea (H₂NCONH₂, \geq 99.0%), Sodium nitrate (NaNO₃, 99.99%), Sodium hydroxide (NaOH, 97.00%), Sodium hypochlorite (NaClO), Sodium nitroferricyanide dihydrate (Na₂[Fe(NO)(CN)₅]₂H₂O, 99.98%), ammonium chloride (NH₄Cl, 99.5%), sulfamic acid (99.999%), Para (dimethylamino) benzaldehyde (p-C₉H₁₁NO), N-(1-naphthyl) ethylenediamine dihydrochloride, sulfonamide (98%), phosphoric acid (H₃PO₄, 99%), and sodium sulfate (Na₂SO₄, 99.999%)were purchased from Shanghai Aladdin Biochemical Technology Co. Ltd. The water used in the experiments was from a microporous purification system and the resistivity was 18.25 MΩ cm⁻¹.

Carbon cloth pretreatment: The carbon cloths (CC) were infiltrated in HNO₃ solution at 85 °C for 3 h and washed with distilled water.

A series of measurements of concentrations of relevant substances. The concentration of a series of related substances in electrolytes was determined by UV-Vis spectrophotometry. To dilute the large electrolyte concentration a certain number of times within the detection limit. The specific detection methods are as follows :

Preparation of color-developing agent

Colorant: Weigh 2.5 g $C_7H_6O_3$ and 2.5 g $C_6H_5Na_3O_7$ into a beaker, add 50 mL ultrapure water, dissolve until the solid powder disappears, then weigh 1.8 g NaOH into the solution, mix well with ultrasound, transfer to a glass bottle covered with tin foil, and store in the refrigerator away from light.

Oxidizing agent: Measure 0.64 mL 4 wt% NaClO solution into a beaker, add 20 mL ultra-pure water, mix well, transfer to a glass covered with tin foil and store in the refrigerator away from light.

Catalyst: Weigh 0.1 g sodium isopropyl, dissolve ultrasonic into 10 mL ultra-pure deionized water, ultrasonic mix well, transfer to a glass bottle covered with tin foil, and store in the refrigerator away from light.

Determination of NH₄⁺:

First, a certain amount of electrolyte is removed from the cathode tank with a pipette gun and diluted to 4.0 mL. Then, A mixture of 50 μ L oxidizer (NaClO 4wt%) and 0.75 M NaOH), 500 μ L colorant (0.40 M C₇H₅O₃Na and 0.32 M NaOH), and 50 μ L catalyst (1.0 wt% Na₂[Fe(CN)₅) NO]·H₂O) was prepared is accordingly added to the diluted electrolyte and mixed well. The absorbance intensity of the above solution was recorded at 665 nm wavelength after being kept in the dark for 1.0 h. The relevant concentration-absorbance curves were recorded from a series of NH₄Cl solutions with known standard concentrations. The fitted curves were y = 0.400x - 0.0194, R² = 0.998.

Determination of NO₃-:

First, a certain amount of electrolyte is taken from the cathode tank and diluted to 5.0 mL. Then, add 100 μ L of 1.0 M HCl and 10 μ L of 0.8 wt% sulfamic acid solution, mix evenly, hide from light for 15 min, and remove. The UV spectrum was measured and the absorbance intensity of the above solution was recorded at 220 and 275 nm

wavelengths. The final absorbance value is obtained by the following equation: $A = A_{220nm}-2A_{275nm}$. The relevant concentration-absorbance curves were recorded from a series of NaNO₃ solutions with known standard concentrations, and the fitted curves were y = 0.250x + 0.00123, $R^2 = 0.999$.

Determination of NO₂⁻:

Remove 500 mL electrolyte from the cathode pool, dilute to 5.0 mL, add 100 μ L color developer (containing 4.0 g C₆H₄SO₂N₂H₄, 0.20 g C₁₂H₁₆Cl₂N₂, 10 mL H₃PO₄ (ρ = 1.70 g mL⁻¹) and 50 mL H₂O), mix well, and remove after 15 min of dark color development. The corresponding concentration-absorbance curve was recorded by a series of NaNO₂ solutions with known standard concentrations. The fitting curve was y=0.990x+0.00695, R² = 0.999

Determination of N₂H₄:

Remove 2.0 mL electrolyte from the cathode electrolytic cell, add 2.0 mL color developer (containing 6.0 g p-C₉H₁₁NO, 10 mL HCl, and 300 mL C₂H₅OH), hide from light for 15 min, and then perform UV-visible spectrum test. The absorbance intensity of the above solution was recorded after 15 minutes at 455 nm wavelength. The relevant concentration-absorbance curves were recorded from a series of N₂H₄·H₂O solutions with known standard concentrations. The fitted curves were y=0.329x+0.0764, R² = 0.997

Figures

Fig. S1. SEM images of Co(OH)F/CC.

Fig. S2. (a) N_2 sorption isotherms f CoP@N-C/CC and CoP₄@N-C/CC (b) pore-size distribution of CoP@N-C/CC and CoP₄@N-C/CC.

Fig. S3. (a)-(c) The CV curves of CoO@ZIF-67/CC, CoP@N-C/CC, and CoP₄@N-C/CC rhombic dodecahedrons at a scan rate of 10 to 60 mV s⁻¹ in 0.1 M KOH. (d) The linear relationship between the current density difference (Δj) and the sweep speed of CoO@ZIF-67/CC, CoP@N-C/CC, and CoP₄@N-C/CC.

Fig. S4. CoO@ZIF-67 (a) Chronocurrent determination at a specific potential, (b) The UV-vis absorption spectra of NH_4^+ .

Fig. S5. CoP@N-C (a) Chronocurrent determination at a specific potential, (b) The UV-vis absorption spectra of NH_4^+ .

Fig. S6. (a) UV-Vis absorption spectra with NH_4^+ ions in 0.1 M Na₂SO₄ after incubation for 60 min at room temperature. (b) Calibration curve used for calculation of NH_4^+ concentrations. (c) UV-Vis absorption spectra with NO_3^- ions in 0.1 M Na₂SO₄ after incubation for 15 min at room temperature. (d) Calibration curve used for calculation of NO_3^- concentrations.

Fig. S7. (a) UV-Vis absorption spectra with NO_2^- ions in 0.1 M Na₂SO₄ after incubation for 25 min at room temperature. (b) Calibration curve used for calculation of $NO_2^$ concentrations. (c) UV-Vis absorption spectra with N₂H₄ ions in 0.1 M Na₂SO₄ after incubation for 20 min at room temperature. (d) Calibration curve used for calculation of N₂H₄ concentrations.

Fig. S8. CoP_4 @N-C The UV-vis absorption spectra of N_2H_4 .

Fig. S9. CoP@ZIF-67 The UV-vis absorption spectra of N₂H₄.

Fig. S10. CoO@ZIF-67 The UV-vis absorption spectra of N₂H₄.

Fig. S11. (a) CoP₄@N-C The UV-vis absorption spectra of NO₃⁻, (b) FE and NO₃⁻ conversion rate of CoP₄@N-C/CC.

Fig. S12. CoP@N-C The UV-vis absorption spectra of NO₃⁻.

Fig. S13. CoO@ZIF-67 The UV-vis absorption spectra of NO₃⁻.

Fig. S14. CoP₄@N-C (a)The UV-vis absorption spectra of NO_2^- , (b) NO_2^- selectivity and FE.

Fig. S15. CoP@N-C (a)The UV-vis absorption spectra of NO_2^- , (b) NO_2^- selectivity and FE.

Fig. S16. CoO@ZIF-67 (a) The UV-vis absorption spectra of NO_2^- , (b) NO_2^- selectivity and FE.

Fig. S17. The UV-vis absorption spectra of NH_4^+ with NO_3^- and without NO_3^- .

Fig. S18. The UV-vis absorption spectra of NH₄⁺ over CoP₄@N-C/CC and CC.

Fig. S19. The UV-vis absorption spectra of NH_4^+ with open circuit and closed circuit.

Fig. S20. XRD pattern of CoP₄@N-C/CC after long-time stability test.

Fig. S21. SEM pattern of CoP₄@N-C/CC after long-time stability test.

Catalyst	Electrolyte	NH ₃ yield rate	FE(%)	Ref.
CoO@ZIF-67/CC	0.1 M Na ₂ SO ₄	423.35 μmol h ⁻¹ cm ⁻²	49.6%	This work
CoP@N-C/CC	0.1 M Na ₂ SO ₄	466.05 μmol h ⁻¹ cm ⁻²	75.8%	This work
CoP4@N-C/CC	0.1 M Na ₂ SO ₄	$610.20 \ \mu mol \ h^{-1} cm^{-2}$	92.3%	This work
Fe ₂ O ₃ NRs/CC	0.5 M Na ₂ SO ₄	328.17 μmol h ⁻¹ cm ⁻²	/	1
Cu@Cu ₂ O	0.1M Na ₂ SO ₄	326.7 µmol h ⁻¹	80.6%	2
		mg_{cat}^{-1}		
CuxCoyHHTP	0.5 M Na ₂ SO ₄	299.9 µmol h ⁻¹ cm ⁻²	96.4%	3
30Cu-Co ₃ O ₄	0.1 M KOH	0.584 mmol h ⁻¹	92.4%	4
		mgcat ⁻¹		
$La_2Cu_{0.8}Co_{0.2}O_4$	0.5 M Na ₂ SO ₄	0.0699 mmol·h ⁻	99.7%	5
		$^{1} \cdot mg^{-1}$		
Au–Cu NWs/CF	0.1M Na ₂ SO ₄	5336.0 $\mu g h^{-1} cm^{-2}$	84.1%	6

Table S1. Comparison of different electrocatalysts reported in NO₃-RR under ambient conditions.

References:

[1] T. Li, C. Tang, H. Guo, H. Wu, C. Duan, H. Wang, F. Zhang, Y. Cao, G. Yang and Y. Zhou, ACS Applied Materials & Interfaces, 2022, 44, 49765-49773.

[2] M.H. Jiang, Q. Zhu, X.M. Song, Y.M. Gu, P.B. Zhang, C.Q. Li, J.X. Cui, J. Ma, Z.X. Tie and Z. Jin, *Environmental Science & Technology*, 2022, **14**, 10299-10307.

[3] P. Liu, J. Yan, H. Huang and W. Song, Chemical Engineering Journal, 2023.

[4] M. He, R. Chen, Y. Zhong, H. Li, S. Chen, C. Zhang, S. Deng and F. Gao, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2024, **681**, 132746.

[5] Z. Gong, W. Zhong, Z. He, C. Jia, D. Zhou, N. Zhang, X. Kang and Y. Chen, *Catalysis Today*, 2022, 402, 259-265.

[6] Y. Zha, M. Liu, J. Wang, J. Feng, D. Li, D. Zhao, S. Zhang and T. Shi, *RSC Advances*, 2023, 15, 9839-9844.