
Appendix

A1. YOLOv5 structure

The concept of YOLO suggests utilizing an end-to-end neural network for simultaneous predictions of both

bounding boxes and class probabilities. This sets it apart from earlier methods in object detection that repurpose

classifiers for detection tasks. Through its distinctive approach to object detection, YOLO achieved exceptional

outcomes, surpassing the performance of competing real-time object detection techniques by a substantial margin

[43]. YOLOV5 builds upon the foundations of YOLOV1 through YOLOV4. Consistent enhancements have

propelled it to achieve exceptional results on two authoritative object detection datasets: Pascal VOC (visual object

classes) [44] and Microsoft COCO (common objects in context) [45].

The network architecture of YOLOV5 is illustrated in Fig. A1 and comprises three essential components: the

backbone, the neck, and the head. Initially, input data is fed into CSPDarknet, serving as YOLOV5's backbone, for

the extraction of crucial features. These extracted features are then passed on to path aggregation network (PANet),

which constitutes the neck of the structure. PANet intelligently merges and combines these features. Finally, the

Yolo layer, acting as the head of the architecture, is responsible for generating vital detection outcomes. These

outcomes entail class identification, score assignment, precise location pinpointing, and size determination [46].

This specific architectural choice was made for several significant reasons. First and foremost, it incorporates

the cross-stage partial network (CSPNet) into Darknet, resulting in CSPDarknet as its core structure. This

innovative integration effectively tackles the challenge of redundant gradient information within extensive

backbones. By incorporating gradient variations into the feature map, it streamlines the model's parameters and

reduces floating-point operations per second (FLOPS). As a result, this optimization not only enhances inference

speed and accuracy but also reduces the overall model size. This is particularly helpful for the precise detection of

nanoparticles, as it mitigates potential adverse effects on results while minimizing computational costs [47].

Furthermore, within YOLOV5, the PANet is seamlessly integrated as its neck component, aimed at optimizing

data flow. PANet introduces a pioneering feature pyramid network (FPN) architecture, thereby bolstering the

foundational path for feature extraction. This enhancement serves to amplify the transfer of information from

lower-level features. Concurrently, adaptive feature pooling establishes intricate connections between feature grids

across all levels, efficiently guiding essential data from each level towards subsequent subnetworks. Through the

heightened utilization of precise localization cues in the lower layers, PANet substantially advances the accuracy

of object localization [48].

Finally, at the core of YOLOV5 is the Yolo layer, responsible for producing feature maps of three different

dimensions (18×18, 36×36, 72×72). This exceptional feature empowers the model to efficiently process objects of

diverse sizes, entaling everything from tiny elements to substantial entities. This versatility proves crucial when

identifying objects that vary greatly in scale [49].

Supplementary Information (SI) for Nanoscale.
This journal is © The Royal Society of Chemistry 2024

Fig. A1. A schematic wrokflow of YOLOV5

A2. Nicolais and Narkis formulation

In the Nicolais and Narkis model, the point of yielding is anticipated to transpire within the smallest cross-sectional

area fraction of the polymeric matrix (denoted as), perpendicular to the direction of stress. This is expressed
 𝑓𝐴𝑚

as follows [50]:

𝑓𝐴𝑚
= 1 ‒ 𝑓𝐴𝑓 (A1)

Here, quantifies the nanoparticle surface area as a proportion of the entire sample area at the cross-section
𝑓𝐴𝑓

of the cube that is perpendicular to the loading direction. In scenarios where there is no interfacial adhesion, the

strength of the nanocomposite is contingent upon the effective area of the load-bearing matrix, which can be

expressed as:

𝜎𝑦𝑐 = 𝜎𝑦𝑚(1 ‒ 𝑓𝐴𝑓
) (A2)

In Eq. (A2), represents the yield strength of the composite, while pertains to the yield strength of the 𝜎𝑦𝑐 𝜎𝑦𝑚

matrix. This equation can be adapted as follows:

𝜎𝑅 = 1 ‒ 𝑓𝐴𝑓
(A3)

In this context, signifies the relative strength, calculated as . In the presence of a robust 𝜎𝑅 𝜎𝑅 = 𝜎𝑦𝑐/𝜎𝑦𝑚

interfacial interaction or adhesion between the polymer matrix and nanoparticles, it gives rise to a transitional

region known as the interphase. This interphase possesses distinct physical and mechanical properties compared

to both the polymer and the nanoparticles themselves. In this context, stress can efficiently propagate from the

matrix to the nanoparticles via the interphase, consequently redistributing a fraction of the initially applied stress

that primarily impacted the matrix. To accommodate this interaction effect, the Nicolais and Narkis model was

adapted, as delineated below [51]:

𝜎𝑦𝑐 = 𝜎𝑦𝑚 𝑓𝐴𝑚
+ 𝜎𝑦𝑖𝑛𝑡 𝑓𝐴𝑓 + 𝑖𝑛𝑡

(A4)

In Eq. (A4), represents the interphase strength, and signifies the combined surface area fractions for 𝜎𝑦𝑖𝑛𝑡
𝑓𝐴𝑓 + 𝑖𝑛𝑡

both the interphase and nanoparticles. By taking into account Eq. (A1) and replacing with , Eq. (A4)
𝑓𝐴𝑓

𝑓𝐴𝑓 + 𝑖𝑛𝑡

can be reformulated as below:

𝜎𝑦𝑐 = 𝜎𝑦𝑚 ‒ 𝜎𝑦𝑚 𝑓𝐴𝑓 + 𝑖𝑛𝑡
+ 𝜎𝑦𝑖𝑛𝑡 𝑓𝐴𝑓 + 𝑖𝑛𝑡

(A5)

 is defined as follows:
𝑓𝐴𝑓 + 𝑖𝑛𝑡

𝑓𝐴𝑓 + 𝑖𝑛𝑡
= 𝑓𝐴𝑓

+ 𝑓𝐴𝑖𝑛𝑡
(A6)

Hence, the total surface area fraction of the nanoparticle can be expressed as:

𝑓𝐴𝑓 + 𝑖𝑛𝑡
= 𝑓𝐴𝑓

+ 𝑖𝑓𝐴𝑓
= 𝑓𝐴𝑓

(1 + 𝑖) (A7)

Here, represents the interaction factor, which quantifies the ratio of interfacial area to that of the corresponding 𝑖

particle.

A3. Tensile properties of nanocomposites

The stress-strain curves for UHMWPE and its nanocomposites are shown in Fig. A2. Additionally, the tensile data

derived from these curves are presented in Table A1.

Fig. A2. Stress-strain curves for neat UHMWPE and its nanocomposites

Table A1. Mechanical properties of UHMWPE for different compounds

Compounds Tensile modulus (GPa) Tensile strength (MPa) Tensile strain (%)

UHMWPE 0.91 ± 0.082 25.9 ± 0.87 407 ± 25

UHMWPE/2NZ 1.093 ± 0.091 27.8 ± 0.92 407 ± 20

UHMWPE/4NZ 1.213 ± 0.089 29.4 ± 0.63 315 ± 15

UHMWPE/6NZ 1.305 ± 0.096 28.3 ± 1.13 315 ± 10

A4. Dataset Partitioning

After completing the annotation and polygon drawing process described in Section 2.4, the dataset was divided

into three distinct sets: 80% for training, 10% for validation, and 10% for testing. This partitioning was designed

to ensure robust model training and evaluation. Each set included the annotated polygon coordinates along with

the original image data, which were subsequently input into the neural network model for further analysis. For

more detailed information on the dataset partitioning procedures, please refer to Section 2.4.

A5. Implementation Details and Hyperparameters

Python 3.8 with PyTorch 1.7.0 was utilized for implementing YOLOv5. The hyperparameters were set to a

learning rate of 0.001 and a batch size of 16. The anchor sizes were selected based on the average dimensions of

nanoparticles in the annotated datasets, determined through an analysis of the dataset characteristics.

A6. Mathematical description of loss functions

While implementing YOLOv5 for segmentation, three primary loss functions were employed: box loss, objectness

(obj) loss, and segmentation (seg) loss. Box loss measures the discrepancy between the predicted and ground truth

bounding box parameters (center coordinates, width, and height), expressed as:

𝐵𝑜𝑥 𝐿𝑜𝑠𝑠 = 𝜆𝑙𝑜𝑐

𝑁

∑
𝑖 = 1

((𝑥𝑖 ‒ �̅�𝑖)
2 + (𝑦𝑖 ‒ �̅�𝑖)

2) + 𝜆𝑠𝑖𝑧𝑒

𝑁

∑
𝑖 = 1

((𝑤𝑖 ‒ �̅�𝑖)
2 + (ℎ𝑖 ‒ ℎ̅𝑖)

2) (A8)

where and are the ground truth and predicted center coordinates, and and are the (𝑥𝑖,𝑦𝑖) (�̅�𝑖,�̅�𝑖) (𝑤𝑖,ℎ𝑖) (�̅�𝑖,ℎ̅𝑖)

ground truth and predicted width and height of the bounding boxes. and are weighting factors. Objectness 𝜆𝑙𝑜𝑐 𝜆𝑠𝑖𝑧𝑒

(Obj) Loss quantifies the error in predicting the objectness score, indicating the presence of an object within a

bounding box, as described below:

𝑂𝑏𝑗 𝐿𝑜𝑠𝑠 = ‒
𝑁

∑
𝑖 = 1

[𝑦𝑖 . 𝑙𝑜𝑔(𝑝𝑖) + (1 ‒ 𝑦𝑖) . 𝑙𝑜𝑔(1 ‒ 𝑝𝑖)] (A9)

Here, is the ground truth objectness score (1 if an object is present, 0 otherwise), and is the predicted 𝑦𝑖 𝑝𝑖

objectness score. The Segmentation (Seg) Loss assesses the accuracy of the predicted segmentation masks.

This evaluation combines Binary Cross-Entropy (BCE) loss and Dice loss to capture both pixel-wise

accuracy and overall shape similarity, resulting in the following formulations:

𝐵𝐶𝐸 𝐿𝑜𝑠𝑠 = ‒
1
𝑁

𝑁

∑
𝑖 = 1

[𝑡𝑖 . 𝑙𝑜𝑔(𝑠𝑖) + (1 ‒ 𝑡𝑖) . 𝑙𝑜𝑔(1 ‒ 𝑠𝑖)] (A10)

𝐷𝑖𝑐𝑒 𝐿𝑜𝑠𝑠 = 1 ‒

2
𝑁

∑
𝑖 = 1

𝑠𝑖 𝑡𝑖

𝑁

∑
𝑖 = 1

𝑠𝑖 +
𝑁

∑
𝑖 = 1

𝑡𝑖

(A11)

𝑆𝑒𝑔 𝐿𝑜𝑠𝑠 = 𝜆𝐵𝐶𝐸 .𝐵𝐶𝐸 𝐿𝑜𝑠𝑠 + 𝜆𝐷𝑖𝑐𝑒 .𝐷𝑖𝑐𝑒 𝐿𝑜𝑠𝑠 (A12)

where is the predicted segmentation score for pixel , is the ground truth segmentation label for pixel , and 𝑠𝑖 𝑖 𝑡𝑖 𝑖

and are the weights for the BCE and Dice losses, respectively. The total loss used for training the model 𝜆𝐵𝐶𝐸 𝜆𝐷𝑖𝑐𝑒

is calculated as a weighted sum of the box loss, objectness loss, and segmentation loss as follows:

𝑇𝑜𝑡𝑎𝑙 𝐿𝑜𝑠𝑠 = 𝜆𝐵𝑜𝑥 .𝐵𝑜𝑥 𝐿𝑜𝑠𝑠 + 𝜆𝑂𝑏𝑗.𝑂𝑏𝑗 𝐿𝑜𝑠𝑠 + 𝜆𝑆𝑒𝑔.𝑆𝑒𝑔 𝐿𝑜𝑠𝑠 (A13)

where , λ , and are hyperparameters used to balance the contributions of each loss component.𝜆𝐵𝑜𝑥 𝜆𝑂𝑏𝑗 𝜆𝑆𝑒𝑔

