
Appendix

A1. YOLOv5 structure

The concept of YOLO suggests utilizing an end-to-end neural network for simultaneous predictions of both 

bounding boxes and class probabilities. This sets it apart from earlier methods in object detection that repurpose 

classifiers for detection tasks. Through its distinctive approach to object detection, YOLO achieved exceptional 

outcomes, surpassing the performance of competing real-time object detection techniques by a substantial margin 

[43]. YOLOV5 builds upon the foundations of YOLOV1 through YOLOV4. Consistent enhancements have 

propelled it to achieve exceptional results on two authoritative object detection datasets: Pascal VOC (visual object 

classes) [44] and Microsoft COCO (common objects in context) [45].

The network architecture of YOLOV5 is illustrated in Fig. A1 and comprises three essential components: the 

backbone, the neck, and the head. Initially, input data is fed into CSPDarknet, serving as YOLOV5's backbone, for 

the extraction of crucial features. These extracted features are then passed on to path aggregation network (PANet), 

which constitutes the neck of the structure. PANet intelligently merges and combines these features. Finally, the 

Yolo layer, acting as the head of the architecture, is responsible for generating vital detection outcomes. These 

outcomes entail class identification, score assignment, precise location pinpointing, and size determination [46].

This specific architectural choice was made for several significant reasons. First and foremost, it incorporates 

the cross-stage partial network (CSPNet) into Darknet, resulting in CSPDarknet as its core structure. This 

innovative integration effectively tackles the challenge of redundant gradient information within extensive 

backbones. By incorporating gradient variations into the feature map, it streamlines the model's parameters and 

reduces floating-point operations per second (FLOPS). As a result, this optimization not only enhances inference 

speed and accuracy but also reduces the overall model size. This is particularly helpful for the precise detection of 

nanoparticles, as it mitigates potential adverse effects on results while minimizing computational costs [47]. 

Furthermore, within YOLOV5, the PANet is seamlessly integrated as its neck component, aimed at optimizing 

data flow. PANet introduces a pioneering feature pyramid network (FPN) architecture, thereby bolstering the 

foundational path for feature extraction. This enhancement serves to amplify the transfer of information from 

lower-level features. Concurrently, adaptive feature pooling establishes intricate connections between feature grids 

across all levels, efficiently guiding essential data from each level towards subsequent subnetworks. Through the 

heightened utilization of precise localization cues in the lower layers, PANet substantially advances the accuracy 

of object localization [48]. 

Finally, at the core of YOLOV5 is the Yolo layer, responsible for producing feature maps of three different 

dimensions (18×18, 36×36, 72×72). This exceptional feature empowers the model to efficiently process objects of 

diverse sizes, entaling everything from tiny elements to substantial entities. This versatility proves crucial when 

identifying objects that vary greatly in scale [49].
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Fig. A1. A schematic wrokflow of YOLOV5

A2. Nicolais and Narkis formulation

In the Nicolais and Narkis model, the point of yielding is anticipated to transpire within the smallest cross-sectional 

area fraction of the polymeric matrix (denoted as ), perpendicular to the direction of stress. This is expressed 
 𝑓𝐴𝑚

as follows [50]:

𝑓𝐴𝑚
= 1 ‒ 𝑓𝐴𝑓 (A1)

Here,  quantifies the nanoparticle surface area as a proportion of the entire sample area at the cross-section 
𝑓𝐴𝑓

of the cube that is perpendicular to the loading direction. In scenarios where there is no interfacial adhesion, the 

strength of the nanocomposite is contingent upon the effective area of the load-bearing matrix, which can be 

expressed as:

𝜎𝑦𝑐 = 𝜎𝑦𝑚(1 ‒ 𝑓𝐴𝑓
) (A2)



In Eq. (A2),  represents the yield strength of the composite, while  pertains to the yield strength of the 𝜎𝑦𝑐 𝜎𝑦𝑚

matrix. This equation can be adapted as follows:

𝜎𝑅 = 1 ‒ 𝑓𝐴𝑓
(A3)

In this context,  signifies the relative strength, calculated as . In the presence of a robust 𝜎𝑅 𝜎𝑅 = 𝜎𝑦𝑐/𝜎𝑦𝑚

interfacial interaction or adhesion between the polymer matrix and nanoparticles, it gives rise to a transitional 

region known as the interphase. This interphase possesses distinct physical and mechanical properties compared 

to both the polymer and the nanoparticles themselves. In this context, stress can efficiently propagate from the 

matrix to the nanoparticles via the interphase, consequently redistributing a fraction of the initially applied stress 

that primarily impacted the matrix. To accommodate this interaction effect, the Nicolais and Narkis model was 

adapted, as delineated below [51]:

𝜎𝑦𝑐 = 𝜎𝑦𝑚 𝑓𝐴𝑚
+ 𝜎𝑦𝑖𝑛𝑡 𝑓𝐴𝑓 + 𝑖𝑛𝑡

(A4)

In Eq. (A4),  represents the interphase strength, and  signifies the combined surface area fractions for 𝜎𝑦𝑖𝑛𝑡
𝑓𝐴𝑓 + 𝑖𝑛𝑡

both the interphase and nanoparticles. By taking into account Eq. (A1) and replacing   with , Eq. (A4) 
𝑓𝐴𝑓

𝑓𝐴𝑓 + 𝑖𝑛𝑡

can be reformulated as below:

𝜎𝑦𝑐 = 𝜎𝑦𝑚 ‒ 𝜎𝑦𝑚 𝑓𝐴𝑓 + 𝑖𝑛𝑡
+ 𝜎𝑦𝑖𝑛𝑡 𝑓𝐴𝑓 + 𝑖𝑛𝑡

(A5)

 is defined as follows:
𝑓𝐴𝑓 + 𝑖𝑛𝑡

𝑓𝐴𝑓 + 𝑖𝑛𝑡
= 𝑓𝐴𝑓

+ 𝑓𝐴𝑖𝑛𝑡
(A6)

Hence, the total surface area fraction of the nanoparticle can be expressed as:

𝑓𝐴𝑓 + 𝑖𝑛𝑡
= 𝑓𝐴𝑓

+ 𝑖𝑓𝐴𝑓
= 𝑓𝐴𝑓

(1 + 𝑖) (A7)

Here,  represents the interaction factor, which quantifies the ratio of interfacial area to that of the corresponding 𝑖

particle.

A3. Tensile properties of nanocomposites

The stress-strain curves for UHMWPE and its nanocomposites are shown in Fig. A2. Additionally, the tensile data 

derived from these curves are presented in Table A1.



Fig. A2. Stress-strain curves for neat UHMWPE and its nanocomposites

Table A1. Mechanical properties of UHMWPE for different compounds

Compounds Tensile modulus (GPa) Tensile strength (MPa) Tensile strain (%)

UHMWPE 0.91 ± 0.082 25.9 ± 0.87 407 ± 25

UHMWPE/2NZ 1.093 ± 0.091 27.8 ± 0.92 407 ± 20

UHMWPE/4NZ 1.213 ± 0.089 29.4 ± 0.63 315 ± 15

UHMWPE/6NZ 1.305 ± 0.096 28.3 ± 1.13 315 ± 10

A4. Dataset Partitioning

After completing the annotation and polygon drawing process described in Section 2.4, the dataset was divided 

into three distinct sets: 80% for training, 10% for validation, and 10% for testing. This partitioning was designed 

to ensure robust model training and evaluation. Each set included the annotated polygon coordinates along with 

the original image data, which were subsequently input into the neural network model for further analysis. For 

more detailed information on the dataset partitioning procedures, please refer to Section 2.4.

A5. Implementation Details and Hyperparameters

Python 3.8 with PyTorch 1.7.0 was utilized for implementing YOLOv5. The hyperparameters were set to a 

learning rate of 0.001 and a batch size of 16. The anchor sizes were selected based on the average dimensions of 

nanoparticles in the annotated datasets, determined through an analysis of the dataset characteristics.

A6. Mathematical description of loss functions

While implementing YOLOv5 for segmentation, three primary loss functions were employed: box loss, objectness 

(obj) loss, and segmentation (seg) loss. Box loss measures the discrepancy between the predicted and ground truth 

bounding box parameters (center coordinates, width, and height), expressed as:



𝐵𝑜𝑥 𝐿𝑜𝑠𝑠 =  𝜆𝑙𝑜𝑐

𝑁

∑
𝑖 = 1

((𝑥𝑖 ‒ �̅�𝑖)
2 + (𝑦𝑖 ‒ �̅�𝑖)

2) + 𝜆𝑠𝑖𝑧𝑒

𝑁

∑
𝑖 = 1

(( 𝑤𝑖 ‒ �̅�𝑖)
2 + ( ℎ𝑖 ‒ ℎ̅𝑖)

2) (A8)

where  and  are the ground truth and predicted center coordinates, and  and  are the (𝑥𝑖,𝑦𝑖) (�̅�𝑖,�̅�𝑖) (𝑤𝑖,ℎ𝑖) (�̅�𝑖,ℎ̅𝑖)

ground truth and predicted width and height of the bounding boxes.  and  are weighting factors. Objectness 𝜆𝑙𝑜𝑐 𝜆𝑠𝑖𝑧𝑒

(Obj) Loss quantifies the error in predicting the objectness score, indicating the presence of an object within a 

bounding box, as described below:

𝑂𝑏𝑗 𝐿𝑜𝑠𝑠 =  ‒
𝑁

∑
𝑖 = 1

[𝑦𝑖 . 𝑙𝑜𝑔(𝑝𝑖) +  (1 ‒ 𝑦𝑖) .  𝑙𝑜𝑔(1 ‒ 𝑝𝑖)] (A9)

Here,  is the ground truth objectness score (1 if an object is present, 0 otherwise), and  is the predicted 𝑦𝑖 𝑝𝑖

objectness score. The Segmentation (Seg) Loss assesses the accuracy of the predicted segmentation masks. 

This evaluation combines Binary Cross-Entropy (BCE) loss and Dice loss to capture both pixel-wise 

accuracy and overall shape similarity, resulting in the following formulations:

𝐵𝐶𝐸 𝐿𝑜𝑠𝑠 =  ‒
1
𝑁

𝑁

∑
𝑖 = 1

[𝑡𝑖 . 𝑙𝑜𝑔(𝑠𝑖) +  (1 ‒ 𝑡𝑖) .  𝑙𝑜𝑔(1 ‒ 𝑠𝑖)] (A10)

𝐷𝑖𝑐𝑒 𝐿𝑜𝑠𝑠 =  1 ‒  

2
𝑁

∑
𝑖 = 1

𝑠𝑖 𝑡𝑖 

𝑁

∑
𝑖 = 1
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∑
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𝑡𝑖 

(A11)

𝑆𝑒𝑔 𝐿𝑜𝑠𝑠 =  𝜆𝐵𝐶𝐸 .𝐵𝐶𝐸 𝐿𝑜𝑠𝑠 +   𝜆𝐷𝑖𝑐𝑒  .𝐷𝑖𝑐𝑒 𝐿𝑜𝑠𝑠 (A12)

where  is the predicted segmentation score for pixel ,  is the ground truth segmentation label for pixel , and 𝑠𝑖 𝑖  𝑡𝑖 𝑖

and are the weights for the BCE and Dice losses, respectively. The total loss used for training the model 𝜆𝐵𝐶𝐸 𝜆𝐷𝑖𝑐𝑒  

is calculated as a weighted sum of the box loss, objectness loss, and segmentation loss as follows:

𝑇𝑜𝑡𝑎𝑙 𝐿𝑜𝑠𝑠 =  𝜆𝐵𝑜𝑥 .𝐵𝑜𝑥 𝐿𝑜𝑠𝑠 +  𝜆𝑂𝑏𝑗.𝑂𝑏𝑗 𝐿𝑜𝑠𝑠 +  𝜆𝑆𝑒𝑔.𝑆𝑒𝑔 𝐿𝑜𝑠𝑠 (A13)

where , λ , and  are hyperparameters used to balance the contributions of each loss component.𝜆𝐵𝑜𝑥 𝜆𝑂𝑏𝑗 𝜆𝑆𝑒𝑔


