Supporting information for

One-step Solvothermal Synthesis of Dye-based Multicolor

Fluorescent Carbon Dots for Information Encryption and Anti-

counterfeiting Applications

Yi Zhou^a, Hai-lin Duan^a, Ke-jun Tan^{*,a}, Lin Dong^b

^aKey Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China; E-mail: tankj@swu.edu.cn, Tel: +86-23-68367257, Fax: +86-23-68367257.

^bSchool of the Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.

Experimental section

Characterization techniques. Fluorescence spectra were performed with the HITACHI F-2700 fluorescence spectrophotometer (Tokyo, Japan). Ultraviolet-visible absorption spectra were collected on a UV-2600 spectrophotometer (Shimadzu, Japan). The morphology, particle size and lattice of the CDs were characterized using a Talos F200X high resolution transmission electron microscope (TEM) (Thermo Fisher, USA). The fluorescence decay was obtained with an FLS980 steady-state/transient fluorescence spectrometer (Edinburgh, UK). The elemental composition and functional group class of the CDs were characterized by a Thermo Scientific Escalab 250Xi X-ray photoelectron spectrometer (Thermo Fisher, USA) and a Nicolet 5700 Fourier

Transform Infrared (FTIR) spectrometer (Nicolet, USA). XRD images were taken on a D8 ADVANCE X-ray diffractometer (Bruker, Germany).

Quantum yield (QY) measurement. The QYs of the three CDs were determined by the reference method at room temperature. Quinine sulfate (QY=54% in 0.01 M H₂SO₄) was selected as the reference for B-CDs and G-CDs, while Rhodamine B (QY=65% in ethanol) was chosen as the reference for R-CDs. The equation used is as follows¹:

$$\Phi_X = \Phi_R \left(\frac{m_x}{m_R}\right) \left(\frac{\eta_x^2}{\eta_R^2}\right)$$

where Φ is the QY and *m* represents the slope of the linear fit curve between the integral area of the fluorescence intensity and its corresponding absorption intensity.

 η is the refractive index of the solvent (1.33 of water and 1.36 of ethanol). The subscripts"x"and "R"refer to the sample CDs and the standards, respectively. Absorbance values for both samples and standard solutions were kept below 0.1 to prevent the re-absorption effect.

Figure S1. (a) Fluorescence emission spectra of M-CDs. (b) Thin-layer chromatography was performed on ATA, M-CDs and NBA respectively.

Figure S2. The images are photographs of reaction mixtures prepared at different reaction temperatures with ATA and NBA as co-reactants under daylight (top) and 365 nm UV light (bottom). From left to right, these samples were prepared at 120, 140, 160, 180 and 200 °C, respectively.

Figure S3. Fluorescence emission spectra of M-CDs at different reaction temperatures.

Figure S4. PL delay curves of (a) B-CDs, (b)G-CDs, and (c)R-CDs, respectively.

Samples	$\tau_1(ns)$	B ₁ (%)	$\tau_2(ns)$	B ₂ (%)	$\tau_{avg}(ns)$	χ^2
B-CDs	0.68	15.02	6.62	84.98	5.73	1.188
G-CDs	0.50	27.60	9.05	72.40	6.69	1.182
R-CDs	4.06	100.00	\	\	4.06	1.027

Table S1. PL lifetimes of B-CDs, G-CDs and R-CDs in ethanol.

Table S2. QYs data of B-CDs, G-CDs, and R-CDs references, respectively.

Samples	Absorbance	Integrated Area	Slope	QYs (%)
	0.014	249109.154		
	0.016	269186.758		
Quinine Sulfate	0.023	398029.191	1.6523×107	54.00
	0.037	642224.787		
	0.041	676786.983		
	0.017	244313.582		
	0.022	318050.803		
Quinine Sulfate	0.030	392376.246	1.5547×10^{7}	54.00
	0.034	453878.719		
	0.043	548620.878		
	0.020	106087.806		
Rhodamine B	0.026	142532.582		
	0.036	189458.878	4.5864×10 ⁶	65.00
	0.045	227333.75		
	0.056	273533.198		

Table S3. QYs data of B-CDs, G-CDs, and R-CDs.

Samples	Absorbance	Integrated Area	Slope	QYs (%)
	0.024	172288.458		
	0.033	238137.762		
B-CDs	0.042	280398.606	6.9478×10 ⁶	22.71
	0.056	391008.043		
	0.073	513397.547		
	0.026	54777.146		
	0.037	87013.286		
G-CDs	0.046	111147.38	2.7606×10^{6}	9.59
	0.052	125509.485		
	0.068	171743.043		
	0.023	33246.329		
	0.027	39548.344		
R-CDs	0.047	66130.155	1.3246×10^{6}	18.77
	0.064	86958.755		
	0.068	94130.978		

Figure S5. Plots of integrated PL intensity against absorbance of (a) Quinine Sulfate, B-CDs, (b) Quinine Sulfate and G-CDs and (c) Rhodamine B and R-CDs, respectively.

Raw materials	Reaction	Emission	QYs	Reference
	conditions	wavelength		
Citric acid and urea	180 °C, 12 h	460-630 nm	4.0%-13.1%	2
L-tyrosine and o- phenylenediamine	180 °C, 18 h	451-590 nm	8.6%-20.9%	3
Catechol				
m-dihydroxybenzene hydroquinone 1,6- dihydroxynaphthalene	200 °C, 2-7 h	450-598 nm	23.85%- 50.54%	4
Melamine and Citric acid	180 °C, 8 h	450-650 nm	4.28%-4.95%	5
o-phenylenediamine and	100 0,01			U
nickel chloride hexahydrate	180 °C, 1 h-20 h	513-612 nm	5.03%-11.82%	6
Citric acid	200 °C, 6 h	470-595 nm	21.9%-24.2%	7
2,3-Diaminopyridine	180 °C, 6 h	382-594 nm	8.4%-9.3%	8
o-phenylenediamine with aniline, 1,8- diaminonaphthalene and [1,1'-binaphthalene]-2,2'- diamine	180 °C, 12 h	440-580 nm	11.0%-59.0%	9
o-phenylenediamine and m-aminophenol	180 °C, 12 h	397-650 nm	8.70%-23.66%	10
Tea polyphenol and o- phthalaldehyde	200°C, 6 h	443-585 nm	21.0%-33.0%	11
2-aminoterephthalic acid and Nile Blue A	160 °C, 8 h	440-628 nm	9.59%-22.71%	This work

Table S4. Summary of representative multicolor CDs and CDs in this work.

Figure S6. Photobleaching Stability Tests for (a) B-CDs, (b)G-CDs, and (c)R-CDs, respectively.

Table S5. Full width at half maxima (FWHM) values of the XRD diffraction peaks of B-CDs, G-CDs and R-CDs.

Samples	FWHM
B-CDs	5.4838
G-CDs	5.3942
R-CDs	5.3405

Table S6. Carbon (C), oxygen (O) and nitrogen (N) elements of B-CDs, G-CDs and R-CDs.

Samples	C (%)	O (%)	N (%)
B-CDs	65.06	32.69	2.25
G-CDs	69.26	29.18	1.56
R-CDs	67.56	30.45	1.99

Table S7 The fitting results of the high resolution XPS spectra of C1s for B-CDs, G-CDs, and R-CDs.

Samples	C-C/C=C (%)	C-N/C-O (%)	C=O/C=N (%)	O-C=O (%)
B-CDs	64.92	17.66	8.39	9.03
G-CDs	66.83	25.42	3.84	3.91
R-CDs	69.59	21.28	6.10	3.03

Table S8 The fitting results of the high resolution XPS spectra of O1s for B-CDs, G-CDs, and R-CDs.

Samples	C=O (%)	C-O (%)	O-C=O (%)
B-CDs	27.24	50.30	22.45
G-CDs	6.73	78.19	15.08
R-CDs	22.48	62.14	15.38

Samples	Pyridinic N (%)	Amino N (%)
B-CDs	32.83	67.17
G-CDs	35.71	64.29
R-CDs	29.87	70.13

Table S9 The fitting results of the high resolution XPS spectra of N1s for B-CDs, G-CDs, and R-CDs.

Figure S7. Determination of the band gap energy (E_g) of (a) B-CDs, (b)G-CDs, and (c) R-CDs from UV-vis absorption spectrum.

Figure S8. Multi-color CDs ink after two months of sitting.

Reference

- M. Moniruzzaman, B. Anantha Lakshmi, S. Kim and J. Kim, *Nanoscale*, 2020, 12, 11947-11959.
- 2. K. Holá, M. Sudolská, S. Kalytchuk, D. Nachtigallová, A. L. Rogach, M. Otyepka and R. Zbořil, *ACS Nano*, 2017, **11**, 12402-12410.
- L. Jin, L. Zhang, L. Yang, X. Wu, C. Zhang, K. Wei, L. He, X. Han, H. Qiao, A. M. Asiri, K. A. Alamry and K. Zhang, *Journal of Materials Science & Technology*, 2020, 50, 184-191.
- 4. F. Yan, H. Zhang, N. Yu, Z. Sun and L. Chen, Sensors and Actuators B:

Chemical, 2021, **329**, 129263.

- 5. G. Liu, D. Kong, J. Han, R. Zhou, Y. Gao, Z. Wu, L. Zhao, C. Wang, L. Wang and G. Lu, *Sensors and Actuators B: Chemical*, 2021, **342**, 129963.
- 6. Y. Wu, J. Li, X. Zhao and X. Gong, *Carbon*, 2023, **201**, 796-804.
- 7. X. Huo, H. Shen, R. Liu and J. Shao, *ACS Omega*, 2021, **6**, 26499-26508.
- R. Dai, X. Chen, N. Ouyang and Y. Hu, *Chemical Engineering Journal*, 2022, 431, 134172.
- 9. Z. Liu, X. Lu, M. Liu and W. Wang, *Journal*, 2023, 28.
- 10. H. Hu, J. Li and X. Gong, *Applied Materials Today*, 2024, **37**, 102154.
- 11. M. Chen, C. Liu, H. Sun, F. Yang, D. Hou, Y. Zheng, R. Shi, X. He and X. Lin, *ACS Applied Materials & Interfaces*, 2024, **16**, 9182-9189.