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The formation of chains of magnetic nanoparticles is a long-
studied subject that dates back to the early 70s of the 20th cen-
tury1,2. Many theoretical, experimental and computational stud-
ies reported the impact of chains on the systems’ magnetic, rheo-
logical and optical response3–10. A rigorous derivation of the the-
oretical expression for the magnetisation of chain-forming dipo-
lar hard spheres was first proposed by Mendelev and Ivanov11.
This model is based on the iterative approximation of a n-particle
chain partition function, Qn(H), for any value of an applied field,
H, and the density functional theory that yields the number of
such chains as an outcome of the entropy-energy interplay. Let
us consider n identical particles with volume v in a chain, whose
magnetic moments are denoted with m⃗ui and positions through r⃗i,
with index i running along the chain. For a particle with index i,
its magnetic moment and position vector orientations are charac-
terised in spherical coordinates by respectively azimuthal, ωi and
θi, and polar ζi and ϕi, angles calculated with respect to the par-
ticle indexed i−1. In this case, the orientation of the chain with
respect to the field can be encoded via the angle between H⃗ and
µ1, ξ . Considering that only each nearest neighbour pair of parti-
cles in a chain interact with dipole-dipole potential Udd (⃗µi, µ⃗i−1)

and sterically via US (⃗ri ,⃗ri−1); whereas for each particle the inter-
action with H⃗ is denoted by UH (⃗µi, H⃗), one can write the partition
function in the following way:
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dΩ⃗i = (4π)−1 sinωidωidζi, d⃗ri = |⃗ri|2d |⃗ri|sinθidθidϕi,

with thermal energy, kBT .

When these integrals are simplified for hard spheres, a recur-
sive form of a partition function is obtained (as detailed in the
aforementioned work11):
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A j = α f j +a, B j = f jL(A j)/A j,

f j+1 = 1+a f jL(α f j +a)/(α f j +a), f1 = 1

The expression qs
∞ – dimer partition function for an infinitely

strong applied field, is asymptotically approached with grow-
ing Langevin parameter, α = |m⃗ui||H⃗|/(kBT ). For dipolar hard
spheres, a = λ/2, λ = m⃗u2

i /(kBT ) and the ratio between partition
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For platelets instead, the exact result is not known, so, in this
work we assume, analogously to the correlation coefficient (main
text), that in strong field two platelets get correlated as high as
spheres only for high concentrations, φ , i.e., q∞ for platelets can
be expressed via its counterpart in zero field, calculated in our
previous work12, q0, as

q∞ = λq0 tanhκφ , (4)

allowing for concentration dependent orientational order param-
eter, Q = tanhκφ .

When comparing the results for magnetisation, using expres-
sion (29) from the aforementioned work11, we were pleased to
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Fig. 1 The fractions of particles p(n) calculated via DFT, using the rescaled q∞ from Eq. (4).

find the same value κ = 5.5 as previously obtained for the suscep-
tibility (see, Figure 5 of the main manuscript, M∗(q∞) and com-
pare to a non-rescaled version M∗(qs

∞)).

Even though, this scaling is not general and cannot be used
for φ going to zero, its usage can be justified by the following
observation. If we calculate the concentration of chains g(n) nu-
merically from DFT, using expression (4), the structural proper-
ties obtained for two concentrations of interest appear to be very
close to those observed in simulations. Analytical results for the
fraction p(n) = ng(n) of particles in chains of a certain length are
presented in Fig. 1.

Additional simulation data

As alluded to in the caption of Figure 7, at high values of φ , the
data grows increasingly noisy at long t. This presents an obstacle
to direct Fourier transformation of the data: an overly aggressive
truncation and/or smoothing would remove any physical features
present at long timescales t, while a lack of processing could in-
troduce oscillations without a physical meaning behind them. For
this reason, we chose to fit the data as described in Methods. An
example of the fitted autocorrelation functions C(t) is shown in
Figure 2, for the "worst case" of a high (φ = 0.195) density and a
comparatively small (N = 256) system. This corresponds to Figure
7c). For this specific density, three separate simulation runs were
carried out, and the fit parameters which showed the best overall
agreement were chosen to represent the data.
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