Supplementary information

Novel GO hoisted SnO₂-BiOBr bifunctional catalyst for the remediation of organic dyes under the illumination of visible light and electrocatalytic water splitting

Manshu Dhillon, ^a Abhishek Naskar, ^a Neha Kaushal, ^{bc} Shekhar Bhansali,^d Avishek Saha, ^{ce}

and Aviru K Basu *a.

a. Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Mohali 140306, India

b. CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30 C, Chandigarh, 160030, India

c. Academy of Scientific and Innovative Research (AcSIR-CSIO), Ghaziabad-201002, India

d. Electrical and Computer Engineering, Florida International University, Miami, FL 33199, *United States of America*

e. CSIR-National Chemical Laboratory (NCL), Dr. Homi Bhabha Road, Pune, 411008, India

*Corresponding Author: Aviru Kumar Basu (aviru.basu@inst.ac.in)

Sample	Diffraction plane	FWHM
SnO ₂	(110)	1.08
	(101)	1.08
	(211)	1.08
BiOBr	(102)	0.426
	(110)	0.358
	(200)	0.34
	(212)	0.442

SnO ₂ -BiOBr-rGO	(110)	0.8
	(101)	0.8
	(211)	0.8
	(102)	0.292
	(110)	0.25
	(200)	0.278
	(212)	0.296

Figure S1. Full Width at Half Maximum (FWHM) values for the different diffraction planes for SnO₂, BiOBr, and the final nanocomposite SnO₂-BiOBr-rGO.

Figure S2. High-resolution XPS spectrum of (a) Bi 4f for pristine BiOBr, (b) Sn 3d for pristine SnO_2 , (c) Br 3d for pristine BiOBr, (d) and (e) O1s for pristine BiOBr and SnO_2 respectively.

Fig. S3: First-order kinetics followed for the degradation process of MB dye.

Fig. S4: First-order kinetics followed for the degradation process of RhB dye.

Figure S5. Schematic illustration of energy level diagram for BiOBr and SnO_2 before heterojunction formation.