Electronic Supplementary Information

Enhanced Stability of Boron Modified NiFe Hydroxide for Oxygen Evolution Reaction

Yewon Hong a, \ddagger , Juhyung Choi a, \ddagger , Eunchong Lee a, Yun Jeong Hwang a, b^*

- ^a Department of Chemistry, College of Natural Sciences, Seoul National University (SNU),
 Seoul 08826, Republic of Korea
- ^b Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- ‡ These authors equally contributed to this work.

Corresponding author: yjhwang1@snu.ac.kr

Fig. S1. SEM images of (a) B-NiFeO_xH_y and (b) NiFeO_xH_y.

Fig. S2. EDX mapping images of sr_B-NiFeO_xH_y, tilted at 15 degrees. Note that due to the small scattering angle of the boron, the sample was tilted at 15 degrees to obtain the signal of the B from the B-NiFeO_xH_y catalyst.

Fig. S3. EDX mapping images of $NiFeO_xH_y$, untilted.

Fig. S4. XRD patterns of B-NiFeO_xH_y and NiFeO_xH_y.

Fig. S5. The normalized (a) Ni and (b) Fe K-edge EXAFS analyses of B-NiFeO_xH_y and NiFeO_xH_y.

Fig. S6. High-resolution XPS spectra of (a) B-NiFeO_xH_y and (b) NiFeO_xH_y in Ni 2p.

Fig. S7. High-resolution XPS spectra of (a) B-NiFeO_xH_y and (b) NiFeO_xH_y in Fe 2p.

Fig. S8. High-resolution XPS B 1s spectra of (a) B-NiFeO_xH_y and O 1s spectra of (b) B-NiFeO_xH_y and (c) NiFeO_xH_y.

Fig. S9. LSV curves of (a) B-NiFeO_xH_y and (b) NiFeO_xH_y before and after electro-driven surface-reconstruction process at a scan rate of 5 mV s⁻¹.

Fig. S10. (a) Raman spectra of sr_B-NiFeO_xH_y and sr_NiFeO_xH_y after electro-driven surfacereconstruction process. (b) High-resolution B 1s spectrum of sr_B-NiFeO_xH_y.

Fig. S11. TEM image of sr_B-NiFeO_xH_y.

Fig. S12. TEM image of sr_NiFeO_xH_{y.}

Fig. S13. Cyclic voltammograms of (a) sr_B-NiFeO_xH_y and (b) sr_NiFeO_xH_y in a non-Faradaic region at various scan rates from 5 to 200 mV s⁻¹. (c) Capacitive currents of the sr-catalysts plotted as a function of scan rate and (d) LSV curves of the sr-catalyts normalized by ECSA.

Fig. S14. Photograph of Operando UV-Vis spectroelectrochemical system.

Fig. S15. Operando normalized Fe K-edge XANES analysis at various potential conditions of $sr_B-NiFeO_xH_y$ and $sr_NiFeO_xH_y$. Magnification of the corresponding regions related to the pre-edge XANES regions.

Fig. S16. Operando normalized Ni K-edge XANES analysis at various potential conditions of $sr_B-NiFeO_xH_y$ and $sr_NiFeO_xH_y$. Magnification of the corresponding regions related to the pre-edge XANES regions.

Fig. S17. Chronopotentiometric curve of sr_NiFeO_xH_y at a current density of 200 mA cm⁻² in 30 wt% KOH under 55 °C. Inset indicates LSV curves of before and after stability test without iR compensation.

Fig. S18. (a) LSV curves and (b) overpotentials at 10 mA cm⁻² of sr_B-NiFeO_xH_y with varying boron amounts in 1 M KOH. The boron amounts were varied by adding 0.125, 0.25, 0.5, and 2 times of the NaBH₄ added during the synthesis process.

Fig. S19. Long-term stability test at 200 mA cm⁻² in 1 M KOH of sr_B-NiFeO_xH_y with varying B amounts in 1 M KOH. The dotted lines in a graph represent the durabilities of sr_B_{0.125}-NiFeO_xH_y and sr_B_{0.25}-NiFeO_xH_y, which are 6 h and 22 h, respectively. Fluctuations during the stability tests are owing to bubble formation near the reference electrode.

Fig. S20. ICP-MS trace of sr_B-NiFeO $_xH_y$ during the long-term stability test.

Fig. S21. EPMA of sr_B-NiFeO_xH_y for (a) Ni and (b) Fe after 12 hours at a current density of 200 mA cm⁻².

Fig. S22. The normalized Fe K-edge XAS analyses of B-NiFeO_xH_y before and after 12 h and 100 h stability test.

Fig. S23. The normalized Ni K-edge XAS analyses of B-NiFeO_xH_y before and after 12 h and 100 h stability test.

Fig. S24. Cs-corrected STEM images of sr_B-NiFeO_xH_y after long-term OER stability test: (a) After 12h and (b) After 100h.

Samples	At	omic ratio)
Sampies	Ni	Fe	В
B-NiFeO _x H _y	1	0.26	0.60
NiFeO _x H _y	1	0.25	0

Table S1. ICP-MS analysis of the as-prepared pristine $B-NiFeO_xH_y$ and $NiFeO_xH_y$.

Catalyst	Overpotenti al j ₁₀ (mV)	Tafel slope (mV dec ⁻¹)	Stability	Ref.
sr_B-NiFeO _x H _y	250	43	200 mA cm ⁻² @100h 200 mA cm ⁻² @79h at 55 °C in 30 wt% KOH	This work
Ni ^{vac} Fe ^{vac} -LDH	230	52	100 mA cm ⁻² @100h	S 1
^{SA} Ru/NiFe LDH	251	98.1	10 mA cm^{-2} @8h	S2
NiFe-ANR	228	37	10 mA cm ⁻² @10h	S3
CoNiFe-LDH	257	31.4	10 mA cm ⁻² @60h	S4
NiFeCe-LDH	232	31.69	20 mA cm ⁻² @70h	S5
v-NiFe LDH	210	34.8	$50 \text{ mA cm}^{-2} @8h$	S6
3D-NiFe-LDH	280 (j ₃₀)	50	200 mA cm ⁻² @10h	S7
NiFeSn@NiFe(Ox y)Hydroxide	260	50	10 mA cm ⁻² @11h	S 8
PM-NiFe LDH	230	47	1.46 V@20h	S9
multi-layered NiFe LDH	260	27	500 mA cm ⁻² @20h at 80 °C	S10
Er-NiFe- LDH@NF	192	51.1	10 mA cm ⁻² @24h	S11
Ni ₂ Fe@Co- NC/CC	201	32.04	100 mA cm ⁻² @40h	S12

Table S2. Comparison of OER performance of sr_B-NiFeO_xH_y with other recently reported electrocatalysts in 1.0 M KOH.

All electrochemical tests were conducted in 1.0 M KOH.

Table S3. Values of fitted parameters determined by fitting the Nyquist plot in Figure 2d where the units for resistance (R) and capacitance (constant phase element, Q) are Ω and $F \times s^{(1-a)}$ respectively.

Parameters	R _s	Q1	a 1	R ₁	Q ₂	a ₂	R _{ct}
sr_B-NiFeO _x H _y	7.24	1.40×10-4	0.61	2.48	1.87×10-2	0.51	29.7
sr_NiFeO _x H _y	6.76	65.30	0.86	42.5	4.66×10-3	0.42	168.5

Samples	Resul	ting atom	ic ratio	Addec	l ratio duri	ng synthesis
Samples	Ni	Fe	В	Ni	Fe	В
B _{0.125} -NiFeO _x H _y	1	1.18	0.054	1	0.25	0.312
B _{0.25} -NiFeO _x H _y	1	0.50	0.34	1	0.25	0.625
B _{0.5} -NiFeO _x H _y	1	0.28	0.65	1	0.25	1.25
B-NiFeO _x H _y	1	0.26	0.60	1	0.25	2.5
B ₂ -NiFeO _x H _y	1	0.26	0.60	1	0.25	5

Table S4. The inductively coupled plasma-mass spectrometry (ICP-MS) results and initially added ratio of Ni, Fe, and B during synthesis for each as-prepared sample. The amounts of NaBH₄ vary from 0.125, 0.25, 0.5, and 2 times compared to that of the B-NiFeO_xH_y sample.

Table S5. The atomic ratio of Ni: B ratio measured by XPS for each sample condition. "sr_B-NiFeO_xH_y after 12 h" and "sr_B-NiFeO_xH_y after 100 h" were taken after 12 h and 100 h of operation at 200 mA cm⁻², respectively.

Samples	Atomic ratio of Ni: B
As-prepared B-NiFeO _x H _y	0.52
sr_B-NiFeO _x H _y after 12 h	0.40
$sr_B-NiFeO_xH_y$ after 100 h	0.42

Sample	A	Atomic rat	io
Sampie	Ni	Fe	В
sr_B-NiFeO _x H _y after 100 h	1	0.28	0.34

Table S6. ICP-MS analysis of sr_B-NiFeO_xH_y after 100 h of operation at 200 mA cm⁻².

Table S7. ICP-MS analysis of the bare carbon paper utilized within this work.

Sample	Element weight per carbon paper [mg/kg]			
	Ni	Fe	В	
Bare carbon paper	0.47	3.52	0	

References

- [S1] L. Peng, N. Yang, Y. Yang, Q. Wang, X. Xie, D. Sun-Waterhouse, L. Shang, T. Zhang,
 G. I. Waterhouse, *Angew. Chem. Int. Ed.* 2021, 60, 24612.
- [S2] Y. Yang, Q.-N. Yang, Y.-B. Yang, P.-F. Guo, W.-X. Feng, Y. Jia, K. Wang, W.-T. Wang, Z.-H. He, Z.-T. Liu, ACS Catal. 2023, 13, 2771.
- [S3] X. Li, H. Zhang, Q. Hu, W. Zhou, J. Shao, X. Jiang, C. Feng, H. Yang, C. He, Angew. Chem. Int. Ed. 2023, 62, e202300478.
- [S4] J. Wu, T. Yang, R. Fu, M. Zhou, L. Xia, Z. Wang, Y. Zhao, Adv. Funct. Mater. 2023, 2300808.
- [S5] Y. Liao, R. He, W. Pan, Y. Li, Y. Wang, J. Li, Y. Li, Chem. Eng. J. 2023, 464, 142669.
- [S6] Y. Wang, S. Tao, H. Lin, G. Wang, K. Zhao, R. Cai, K. Tao, C. Zhang, M. Sun, J. Hu, *Nano Energy* 2021, 81, 105606.
- [S7] Z. Lu, W. Xu, W. Zhu, Q. Yang, X. Lei, J. Liu, Y. Li, X. Sun, X. Duan, *Chem. Commun.* 2014, 50, 6479.
- [S8] M. Chen, S. Lu, X. Z. Fu, J. L. Luo, *Adv. Sci.* **2020**, *7*, 1903777.
- [S9] X. Zhang, Y. Zhao, Y. Zhao, R. Shi, G. I. Waterhouse, T. Zhang, *Adv. Energy Mater.* 2019, 9, 1900881.
- [S10] R. Chen, S. F. Hung, D. Zhou, J. Gao, C. Yang, H. Tao, H. B. Yang, L. Zhang, L. Zhang, Q. Xiong, Adv. Mater. 2019, 31, 1903909.
- [S11] Y. Zhu, X. Wang, X. Zhu, Z. Wu, D. Zhao, F. Wang, D. Sun, Y. Tang, H. Li, G. Fu, Small 2023, 19, 2206531.
- [S12] T. You, K. Deng, P. Liu, X. Lv, W. Tian, H. Li, J. Ji, Chem. Eng. J. 2023, 144348.