Supporting Information

Modulating the electronic structure of Ru *via* VS₂ decoration for efficient pH-universal electrocatalytic hydrogen evolution reaction

Tingxia Wang^a, Xu Zhang^a, Xiaojiao Yu^a*, Yun Liu^b, Junpeng Li^a, Zongbin Liu^a, Ningning

Zhao^a, Jian Zhang^a, Jinfen Niu^a and Qingliang Feng^{b*}

^a School of Science, Xi'an University of Technology, Xi'an, Shaanxi, 710054, China

^b Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry

and Information Technology, School of Chemistry and Chemical Engineering, Northwestern

Polytechnical University, Xi'an 710072, Shaanxi, China

E-mail: yxjw@xaut.edu.cn (Xiaojiao Yu) fengql@nwpu.edu.cn (Qingliang Feng)

(Tingxia Wang and Xu Zhang contributed equally to this work)

Fig. S1. XRD patterns of the prepared VS_2 and $Ru-VS_2$.

Fig. S2. (a) SEM image of VS_2 . EDS-mapping of (b) V and (c) S in VS_2 .

Fig. S3. CV curves of (a) VS₂/CC, (b) 2.5% Ru/CC, (c) 1% Ru-VS₂/CC, (d) 2.5% Ru-VS₂/CC and (e) 5% Ru-VS₂/CC samples at scanning rates of 20-200 mV s⁻¹ in a potential

window without faradaic process and (f) the corresponding C_{dl} .

Fig. S4. ECSA-normalized LSV curves of VS₂/CC, 2.5%Ru/CC and 2.5%Ru-VS₂/CC for HER.

Fig. S5. XPS survey of the Ru-VS₂ before and after stability test.

Fig. S6. High-resolution XPS spectra of (a) V, (b) S, (c) Ru 3p and (d) Ru 3d of $Ru-VS_2$ before and after stability test.

Fig. S7. SEM images of Ru-VS₂ after stability test.

Electrocatalyst	$oldsymbol{\eta}_{10}$	Tafel slope	Flootrolyto	iR	Reference
	(mV)	(mV dec ⁻¹)	Electrolyte		
2.5%Ru-VS ₂ /CC	89	63	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$		
	87	71	1.0 M KOH	no	This Work
	220	137	1.0 M PBS		
1Pt/VS ₂ /CP	77	44.13	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	-	[1]
10:MoCo-VS ₂ /CC	63	50	1.0 M KOH	yes	[2]
MoS_2/VS_2	199.6	95.2	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	yes	[3]
VS ₂ -Mo-10	243	52.6	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	yes	[4]
CoMnS ₂ @1T-Fe- VS ₂ @NF	89	61	1.0 M KOH	yes	[5]
	157				
2H-VS ₂ -Pd	(20 mA	75	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	yes	[6]
	cm ⁻²)				
VS ₂ NDs annealed	350	79	$0.3 \text{ M} \text{H}_2 \text{SO}_4$	-	[7]
Bio-templated VS ₂	160	50	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	-	[8]
VS_2	68	34	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	yes	[9]
TS-Co ₃ O ₄ @VS ₂	175.29	57	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	-	[10]
VS_2	58	34	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	-	[11]
self-assembled VS ₂	197	134.39	1.0 M KOH	yes	[12]
Ru-MoS ₂ /CC	169	95	$0.5 \ M \ H_2 SO_4$	85% iR	[13]
	90	130	1.0 M KOH		
Ru-MoS ₂	110	78	$0.5 \mathrm{~M~H_2SO_4}$	no	[14]
	98	65	1.0 M KOH		
Ru-MoS ₂ /CC	61	114	1.0 M KOH	yes	[15]
$Ru/np-MoS_2$	30	31	1.0 M KOH	-	[16]
SA-Ru-MoS ₂	76	21	1.0 M KOH	-	[17]
Ru/Ni-MoS ₂	32	41	1.0 M KOH	no	[18]
$Ru_1@D-MoS_2$	107	96	1.0 M KOH	-	[19]
Ru-MoSe ₂ /CMT	70	39	1.0 M KOH	yes	[20]
$Ru@Ni_3S_2$	19.8	33.2	1.0 M KOH	90% iR	[21]
Ru/Mo ₂ CT _x	64	66	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	85% iR	
	78	49	1.0 M KOH		[22]
	73	57	1.0 M PBS		
Ru-MoP-P _v	100	49	$0.5 \mathrm{~M~H_2SO_4}$	95% iR	
	79	49	1.0 M KOH		[23]
	161	70	1.0 M PBS		
N, Ru Co-doped Sb ₂ S ₃	72	193	1.0 M KOH	yes	[24]
Ru@WNO-C	172	38.9	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	100% iR	[25]

 Table S1. Comparisons of HER activity of 2.5%Ru-VS2/CC with other electrocatalysts.

Fig. S8. chronoamperometry curves of Ru-VS $_2$ /CC in (a) 1.0 M KOH and (b) 1.0 M PBS.

Fig. S9. Ball-stick models of $VS_2(a)$ side view and (b) top view.

Fig. S10. Optimized structure models of H* adsorbed on the (a) VS₂, (b) Ru and (c) Ru/VS₂.

Fig. S11. Calculated density of electronic states of (a-b) VS_2 , (c) Ru, (d-e)Ru/VS₂ and the comparison of the VS_2 , Ru and Ru/VS₂.

Fig. S12. Density of electronic d states of Ru and Ru/VS₂.

References

[1] J.T. Zhu, L.J. Cai, X.M. Yin, Z. Wang, L.F. Zhang, H.B. Ma, Y.X. Ke, Y.H. Du, S.B. Xi, A.T.S. Wee, Y. Chai, W.J. Zhang, Enhanced electrocatalytic hydrogen evolution activity in single-atom Pt-decorated VS₂ nanosheets, *ACS Nano*, 2020, **14**, 5600-5608.

[2] V.K. Singh, U.T. Nakate, P. Bhuyan, J.Y. Chen, D.T. Tran, S. Park, Mo/Co doped 1T-VS₂ nanostructures as a superior bifunctional electrocatalyst for overall water splitting in alkaline media, *J. Mater. Chem. A*, 2022, **10**, 9067-9079.

[3] S.H. Yu, Z. Tang, Y.F. Shao, H.W. Dai, H.Y. Wang, J.X. Yan, H. Pan, D.H.C. Chu, In Situ Hybridizing MoS₂ microflowers on VS₂ microflakes in a one-pot CVD process for electrolytic hydrogen evolution reaction, ACS Appl. Energy Mater., 2019, 2, 5799-5808.

[4] W.Y He, X.J. Zheng, J.F. Peng, H. Dong, J.W. Wang, W. Zhao, Mo-dopant-strengthened basal-plane activity in VS₂ for accelerating hydrogen evolution reaction, *Chem. Eng. J.*, 2020, **396**, 125227.

[5] P.P. Dhakal, U.N. Pan, D.R. Paudel, M.R. Kandel, N.H. Kim, J.H. Lee, Cobaltmanganese sulfide hybridized Fe-doped 1T-Vanadium disulfide 3D-Hierarchical core-shell nanorods for extreme low potential overall water-splitting, *Materials Today Nano*, 2022, **20**, 100272.

[6] K. Karthick, T.K. Bijoy, A. Sivakumaran, A.B.M. Basha, P. Murugan, S. Kundu, Enhancing hydrogen evolution reaction activities of 2H-phase VS_2 layers with palladium nanoparticles, Inorg. Chem., 2020, 59, 10197-10207.

[7] G.M. Kumar, P. Ilanchezhiyan, H.D. Cho, D.J. Lee, D. Y.Kim, T.W. Kang, Ultrathin VS₂ nanodiscs for highly stable electro catalytic hydrogen evolution reaction, *Int. J. Energ. Rec.*, 2020, **44**, 811-820.

[8] T.Q. Guo, Y.Z. Song, Z.T. Sun, Y.H. Wu, Y. Xia, Y.Y. Li, J.H. Sun, K. Jiang, S.X. Dou, J.Y. Sun, Bio-templated formation of defect-abundant VS₂ as a bifunctional material toward high-performance hydrogen evolution reactions and lithium-sulfur batteries, *J. Energy Chem.*, 2019, **42**, 34-42.

[9] J.T. Yuan, J.J. Wu, W.J. Hardy, P. Loya, M. Lou, Y.C. Yang, S. Najmaei, M.L. Jiang, F. Qin, K. Keyshar, H. Ji, W.L. Gao, J.M. Bao, J. Kono, D. Natelson, P.M. Ajayan, J. Lou, Facile synthesis of single crystal vanadium disulfide nanosheets by chemical vapor deposition for efficient hydrogen evolution reaction, *Adv. Mater.*, 2015, **27**, 5605-5609.

[10] Z.G. Wang, K. Yu, R. Huang, Z.Q. Zhu, Porous Co_3O_4 stabilized VS₂ nanosheets obtained with a MOF template for the efficient HER, *CrystEngComm*, 2021, **23**, 5097-5105.

[11] Y.J. Qu, M.M. Shao, Y.F. Shao, M.Y. Yang, J.C. Xu, C.T. Kwok, X.Q. Shi, Z.G. Lu, H. Pan, Ultra-high electrocatalytic activity of VS₂ nanoflowers for efficient hydrogen evolution reaction, *J. Mater. Chem. A*, 2017, **5**, 15080-15086.

[12] S.A. Patil, N.K. Shrestha, H.T. Bui, V.D. Chavan, D-K. Kim, S.F. Shaikh, M. Ubaidullah, H. Kim, H. Im, Solvent modulated self-assembled VS₂ layered microstructure for electrocatalytic water and urea decomposition, *Int. J. Energ. Res.*, 2022, 46, 8413-8423.

[13] H. Cui, R. Dong, J.C. Zhao, P.F. Tan, J.P. Xie, J. Pan, Ultralow Ru-incorporated MoS₂ nanosheet arrays for efficient electrocatalytic hydrogen evolution in dual-pH, *New J. Chem.*, 2022, 46, 1912-1920.

[14] S. Geng, J. Sheng, W.W. Yang, F.Y. Tian, M.G. Li, Y.S. Yu, Y.Q. Liu, Y.L. Hou, Activating interfacial S sites of MoS₂ boosts hydrogen evolution electrocatalysis, *Nano Res.*, 2022, **15**, 1809-1816.

[15] D.W. Wang, Q. Li, C. Han, Z.C. Xing, X.R. Yang, Single-atom ruthenium based catalyst for enhanced hydrogen evolution, *Appl. Catal. B Environ.*, 2019, **249**, 91-97.

[16] K. Jiang, M. Luo, Z.X. Liu, M. Peng, D.C. Chen, Y.-R. Lu, T.-S. Chan, F.M.F.D. Groot,Y.W. Tan, Rational strain engineering of single-atom ruthenium on nanoporous MoS₂ for

highly efficient hydrogen evolution, Nat Commun., 2021, 12, 1687.

[17] J.M. Zhang, X.P. Xu, L. Yang, D.J. Cheng, D.P. Cao, Single-atom Ru doping induced phase transition of MoS₂ and S vacancy for hydrogen evolution reaction, *Small Methods*, 2019, **3**, 1900653.

[18] J.M. Ge, D.B. Zhang, Y. Qin, T. Dou, M.H. Jiang, F.Z. Zhang, X.D. Lei, Dual-metallic single Ru and Ni atoms decoration of MoS₂ for high-efficiency hydrogen production, *Appl. Catal. B Environ.*, 2021, **298**, 120557.

[19] C.G. Lang, W.B. Jiang, C.-J. Yang, H. Zhong, P.R. Chen, Q.L. Wu, X.C. Yan, C.-L. Dong, Y. Lin, L.Z. Ouyang, Y. Jia, X.D. Yao, Facile and scalable mechanochemical synthesis of defective MoS₂ with Ru single atoms toward high-current-density hydrogen evolution, *Small*, 2023, **19**, 2300807.

[20] Y.Q. Xue, Y.Y. Xu, Q. Yan, K. Zhu, K. Ye, J. Yan, Q. Wang, D.X. Cao, G.L. Wang, Coupling of Ru nanoclusters decorated mixed-phase (1T and 2H) MoSe₂ on biomass-derived carbon substrate for advanced hydrogen evolution reaction, *J. Colloid. Interf. Sci.*, 2022, **617**, 594-603.

[21] K.F. Wang, B. Li, J.X. Ren, W.X. Chen, J.H. Cui, W. Wei, P. Qu, Ru@Ni₃S₂ nanorod arrays as highly efficient electrocatalysts for the alkaline hydrogen evolution reaction, *Inorg. Chem. Front.*, 2022, **9**, 3885-3897.

[22] Y.Z. Wu, L. Wang, T. Bo, Z.F. Chai, J.K. Gibson, W.Q. Shi, Boosting hydrogen evolution in neutral medium by accelerating water dissociation with Ru clusters loaded on Mo_2CT_x MXene, *Adv. Funct. Mater.*, 2023, **33**, 2214375.

[23] Q.C. Li, X.Y. Luan, Z.Y. Xiao, W.P. Xiao, G.R. Xu, Z.J. Li, Z.X. Wu, L. Wang, Ultrafast microwave synthesis of Ru-doped MoP with abundant P vacancies as the electrocatalyst for hydrogen generation in a wide pH range, *Inorg. Chem.*, 2023, **62**, 9687-9694.

[24] A. Maiti, S.K. Srivastava, N, Ru codoped pellet drum bundle-like Sb₂S₃: an efficient hydrogen evolution reaction and hydrogen oxidation reaction electrocatalyst in alkaline medium, *ACS Appl. Mater. Inter.*, 2020, **12**, 7057-7070.

[25] G. Meng, H. Tian, L.X. Peng, Z.H. Ma, Y.F. Chen, C. Chen, Z.W. Chang, X.Z. Cui, J.L. Shi, Ru to W electron donation for boosted HER from acidic to alkaline on Ru/WNO

sponges, Nano Energy, 2021, 80, 105531.