
1

A supervised Graph-based deep learning algorithm

to detect and quantify clustered particles

Lucas A. Saavedra, Alejo Mosqueira and Francisco J. Barrantes

Supplementary Material
Transformation of localization datasets into Graphs

Since GNNs take a graph as input, localization datasets need to be converted into a graph
format following a suitable criterion. One such condition is the spatiotemporal criterion (ST)
proposed by Manzo and coworkers to study cell dynamics (Pineda et al., 2023). In this criterion,
localizations (considered as “nodes”) are linked with an edge if they are at a distance of 𝑟

nanometers and less than frames apart. However, as explained in the main text, the ST 𝑤
criterion may not be ideally suited for cluster analysis.

We chose instead to transform normalized localization datasets into a Graph using a Delaunay
triangulation criterion (DT) for GNN1 and a multidimensional Delaunay Triangulation (MDT) for
GNN2. Given their spatiotemporal nature, DT and MDT do not require high memory
requirements and are not time consuming. In the DT criterion, the normalized localization
dataset is transformed following the Delaunay triangulation on axes ‘x’, ‘y’, and time. Once the
data is transformed, each node is assigned normalized coordinates in the region of interest
(ROI) and each edge is assigned the spatial distance between adjacent localizations. As DT
edges may not be sufficient to detect clusters once all non-clustered localizations are removed
(remaining connected components after edge removal are the detected clusters), we then
implemented the MDT criterion, which results in a graph with an increased number of edges.
MDT is constituted by the union of the edges obtained with the Delaunay triangulation applied
on four projections of the localization dataset: (i) on axes x and y, (ii) on x and time (t) axis, (iii)
on y and t, and (iv) on axes x, y, and t. In this criterion, node attributes are the normalized
coordinates of the localization and edge attributes are the spatial distance between
localizations and the absolute difference of time between the two localizations.

Since the only encoded attribute of time is the difference between localizations, the method
can analyze localization datasets with the different recorded frames used in the training
process, as exemplified in Figures 1 in the main text. Figure 2 compares the computational and
performance attributes of DT and MDT with spatiotemporal criteria.

Supplementary Information (SI) for Nanoscale.
This journal is © The Royal Society of Chemistry 2024

2

Architecture details

We employed the MAGIK architecture (Pineda et al., 2023) as implemented in the DeepTrack
software package (Midtvedt et al., 2021). For the input to the Graph Neural Networks (GNNs),
GNN1 employs two node features (the ‘x’ and ‘y’ coordinates) and one edge feature (the spatial
distance between localizations). GNN2 also uses the same node features as GNN1, but its edge
features include both spatial and temporal distances between localizations, resulting in two
edge features. The input is then processed by a node and edge encoder, which converts the
node and edge features into latent representations of dimension 96, respectively. Each encoder
is constructed using two normalized sequential dense layers with 64 and 96 units, employing
the Gaussian Error Lineal Unit (GELU) activation function (Hendrycks, 2016). The latent
representations are further updated by three repeated fingerprinting graph blocks (FGNNs)
with an output dense layer with 96 units each, which update each edge and node latent
representation through a gated-based attention mechanism comprised of 12 attention heads.
The edge latent representations are weighted by the localization spatial distances through a
learnable Gaussian attention mechanism (Pineda et al., 2021). Finally, the updated latent
representations are decoded to obtain predictions for nodes and edges in GNN1 and GNN2,
respectively. The Sigmoid activation function is used for the output in both GNNs. The
architecture comprises approximately 400,000 trainable parameters, a complexity suitable for
inference and training on standard desktop computers.

Training Procedure

 We simulated 340 localization datasets of 1,000 frames each. Fifty of these datasets are
simulations without clusters. One hundred and forty of the 340 datasets (~40%) were separated
for validation and the remaining were used for training. Before starting the training, each
training dataset was converted into a Graph following the transformation required for a given
GNN. Classification labels were also prepared to train the GNNs. In the case of GNN1, each
node was assigned a label 1 or 0 depending on whether or not the node corresponded to a
localization in a cluster, respectively. In the case of GNN2, each edge was assigned a label 0 or 1
depending on whether the edge was an inter- or intra-cluster relationship, respectively. Next,
the number of Graphs for GNN2 was duplicated: a filtered Graph and a non-filtered Graph were
generated from a dataset to help GNN2 detect misclassified positive localizations from GNN1.
Next, a minimum number of 512 graphs were generated from these Graphs through a data
augmentation procedure: first, a Graph was selected and randomly partitioned into several
nodes or edges for classification, as for the inference procedure. Partition sizes varied between
500 and 4,000, the step size was kept at 500, and GNNs were trained with each size separately.
Next, the sub-Graphs were randomly rotated. In this way, one can generate a large variety of
Graphs with a low number of localization datasets such that every epoch works with new
Graphs during the entire training procedure, thus preventing overfitting and increasing model

3

generality. The network was trained on up to 100 epochs for GNN1 and 10 epochs for GNN2.
No early stopping mechanism was applied in either case, and the batch size was set to 1 to
prevent batches with Graphs with different selected partition sizes (batch size different from 1
implies artifactual graph modifications). Training GNN1 and GNN2 under a specific partition size
required ~4 h and ~10 min, respectively.

Both GNNs were subjected to two different training conditions. One condition included all the
training datasets, and the second one excluded those simulated datasets with no clusters. The
performance of these training conditions is shown in the Results section. Both architectures
were trained using a loss binary cross-entropy function, and a value between 0 and 1 was
predicted with a sigmoid function for every node and edge, depending on the task. To classify
the nodes (GNN1) and edges (GNN2), if the predicted output of these was greater than a
threshold, , it was considered positive. In the case of GNN1, automatic threshold selection was 𝜃
implemented using GHOST, an algorithm that determines which threshold fits better on
imbalanced data (Esposito et al., 2021). To prevent overwhelmingly long training times and
excessive memory consumption, for GNN2 we used a value of =0.5. All training and inference 𝜃
procedures were executed on a PC with an Nvidia TITAN V GPU with 64GB RAM. The proposed
architecture and training were implemented with the TensorFlow package.

Training Loss

 The binary cross-entropy function is the loss function used to train all the neural networks. In
the case of edges, the function is defined as:

𝐿(𝑦𝑒,𝑝𝑒) = 𝑦𝑒 ∗ log (𝑝𝑒) + (1 ‒ 𝑦𝑒) ∗ 𝑙𝑜𝑔⁡(1 ‒ 𝑝𝑒)

where is the edge true label and is the edge predicted value. In the case of nodes, it is the 𝑦𝑒 𝑝𝑒

same function, except that nodes are evaluated. Supplementary Figure 1 shows how the
average training loss (i.e., the averaged evaluation of the loss function across all edges or
nodes, depending on the GNN) changes as training advances.

4

Supplementary Figure 1. Training loss of GNNs. The left column shows training of GNNs when
all datasets are included in the training process and the right column the corresponding training
process when datasets with no clusters are excluded. Notice that in the case of GNN1, training
is more stable when datasets without clusters are not included during training. The partition
size is colour-coded as indicated on the right of each figure.

Inference Procedure

 For binary node classification, the localization dataset was transformed into a Graph using
the DT criterion. Due to memory limitations, the Graph is partitioned into different subGraphs
such that every node appears only once across all partitions and nodes are temporally sorted.
The resultant Graph is fed into the GNN1 to classify nodes. For binary edge classification, the
filtered localization dataset is transformed into a Graph using the MDT criterion, and the Graph
is partitioned into different subGraphs such that every edge appears only once across all
partitions. The resulting Graph is fed into the GNN2 to classify edges. Supplementary Figure 2
shows an example of how nodes and edges are considered through partitions for these tasks
with a Graph of 13 nodes and 27 edges. It is important to note that the last node or edge
partition will not necessarily have the size defined by the user, as the number of nodes/edges is
not inevitably divisible by the selected partition size.

5

Supplementary Figure 2. Edge and node partitions. In the case of node partitions, the example
shows sub-Graphs with 5 nodes (except for the last partition, which has only 3 nodes). The
green objects correspond to the current partition, whereas the red objects represent objects
that have already been iterated. In the case of edge partitions, all nodes are iterated and some
of them may be re-iterated several times. In contrast, in node partitions some edges may not
be iterated.

Graph Criterion Utility (GCU) definition

Here we developed two criteria based on DT to build Graphs from datasets involving space and
time dimensions. As the selected criterion has a notable impact on the prediction performance,
we further introduced a metric called Graph Criterion Utility (GCU) that depends on another
metric, Adjusted Rand Index Score (ARI), representing the performance of the task to be
accomplished if the algorithm classifies/infers perfectly under a specific criterion. In other
words, GCU is the maximum performance reachable by the algorithm if a specific criterion is

applied. In the specific task of this work, measures how well clusters are detected if 𝐺𝐶𝑈𝐴𝑅𝐼

GNN1 and GNN2 classify with 100% accuracy using the DT criterion. To achieve this, we began
by filtering unclustered localizations from ground-truth datasets, effectively treating each
dataset as perfectly classified by GNN1. Subsequently, these filtered datasets were converted
into a compatible graph for GNN2, where we eliminated all inter-cluster edges, assuming
perfect classification by GNN2. The remaining connected components of this manipulated

graph were considered the obtained clusters . Finally, we computed as 𝐶' 𝐺𝐶𝑈𝐴𝑅𝐼 𝐴𝑅𝐼(𝐶,𝐶')

such that represents the set of ground-truth clusters. 𝐶

Measurement of dataset balance

 To quantify the balance of a dataset (a perfectly balanced dataset has the same number of
samples for every defined class), we applied the non-negative relative Shannon entropy (also

6

known as Kullback-Leibler divergence) which is useful to measure the distance between
observed and expected distributions (Shannon, 1948). Given a dataset with samples where 𝑚

each sample is assigned a class (or category) , is the number of classes, is the 𝑘 ∈ [1,2,…,𝐾] 𝐾 𝑚𝑘

number of samples belonging to class , and is the proportion of samples in the 𝑘
𝑝𝑘 =

𝑚𝑘

𝑚

dataset belonging to class . The relative Shannon entropy is defined as:𝑘

𝐾

∑
𝑘 = 1

𝑝𝑘 ∗ log
𝑝𝑘

𝑞𝑘

where is the expected proportion of samples belonging to class . If the dataset is balanced, 𝑞𝑘 𝑘

observed proportions are expected to be (i.e., the number of samples for each class is

1
𝐾

uniformly distributed). The expression can be rewritten as:
𝐾

∑
𝑘 = 1

𝑝𝑘 ∗ log
𝑝𝑘

𝑞𝑘
=

𝐾

∑
𝑘 = 1

𝑝𝑘 ∗ log
𝑝𝑘

1/𝐾
=

𝐾

∑
𝑘 = 1

𝑝𝑘 ∗ log (𝑝𝑘𝐾) = 𝐵𝑎𝑙𝑎𝑛𝑐𝑒(𝑝1,𝑝2,…,𝑝𝐾)

which is zero for a completely balanced dataset (). Therefore, the 𝑝1 = 𝑝2 = … = 𝑝𝐾 = 1/𝐾

more balanced a dataset is, the more the expression approaches 0. The balance was calculated
with the relative Shannon entropy implemented in SciPy (Virtanen et al., 2020).

Supplementary Figure 3. GNN1 and GNN2 execution times for different partition sizes. Each
red point represents the mean of the time within which GNNs executed each validation dataset
of 1,000 frames and error bars represent the 95% confidence interval of the mean.

7

Supplementary Figure 4. Execution times of the proposed GNN algorithm (red dots) vs qSR
(blue dots) on datasets of 1,000 frames across different simulation conditions. qSR is faster
than the proposed algorithm and the speed linearly decreases with the average localization per
frame in both cases (p<0.0001).

Supplementary Figure 5. TNR of the proposed algorithm (red dots) vs qSR (blue dots) on
datasets of 1,000 frames across different simulation conditions on datasets without clusters.
With both algorithms, TNR decreases as the average number of locations per frame increases
(p<0.0001). With GNNs, we observed greater robustness in these situations.

8

GNNs applied to static samples

In order to assess the performance of the GNN-based algorithm on static cluster data, we
resorted to datasets containing the type of information such as that reported in ref.
(Williamson et al., 2020). Suppl. Figure 6 compares the CAML architecture and GNN in terms of
F1-Score, ARI, and execution time. The GNN-based algorithm outperforms CAML both in terms
of execution time and predictive performance.

Supplementary Figure 6. GNNs vs CAML performance metrics on static datasets. Histograms
of F1-Score (left), ARI (middle), and execution time (right) for GNN and CAML algorithms.

AutoElbow for DBSCAN

We applied some recently developed algorithms to automatically select parameters for cluster
analysis. One of these is AutoElbow (Adeiza James Onumanyi et al., 2022)., which detects the
elbow point of an elbow-based Graph and automatically selects parameters to further
implement cluster analysis. These authors showed that the algorithm performs well for k-
means that consider as evaluation measure the total WSD (TWSD), obtained as the sum of the
distances between each point in a cluster and its centroid (Adeiza James Onumanyi et al., 2022)
according to a set of values for k, the number of clusters. Ester and coworkers (Ester et al.,
1996) explained how eps (maximum distance at which a set of points are considered as
neighbours) can be selected according to a visual inspection of the k-distance Graph: the
“valley” of this Graph is equivalent to the “elbow” in k-means. When we implemented
AutoElbow for DBSCAN and executed it on 2 toy datasets with 2 clusters in each dataset, the
number of clusters detected by automatic selection was overestimated in comparison to
manual selection. Supplementary Figure 7 shows the results obtained with AutoElbow

9

compared to manual parameter selection on Scikit-Learn toy datasets (Pedregosa et al., 2011).
We provide a Python implementation on the code repository of the work of AutoElbow.

Supplementary Figure 7. AutoElbow for DBSCAN. Each square represents the results of cluster
analysis with DBSCAN, employing different eps. The left column shows the results under
manual parameter selection and the right column under automatic parameter selection using
AutoElbow. Each cluster is colour-coded, and the eps value is shown in the bottom-right corner
of each example.

Simulation Details

 As there are no available ground-truth datasets to train and validate the present algorithm, a
simulation framework was designed and implemented with Python to recreate a wide range of
experimental conditions. To accelerate simulations, we implemented CythonBuilder on the
written code to compile Python scripts into Cython code (Behnel et al., 2011).

i) Cluster initialization

 An experimental instance was created with a ROI of height and width . Next, a number 𝐻 𝑊

between and of elliptic clusters (as this is the typical 2D-shape in most 𝑁𝐼𝑁𝐹 𝑁𝑆𝑈𝑃

experimentally found nAChR nanoclusters (Mosqueira et al., 2018, 2020)) was created, where

each cluster had a different number of initial particles , width and height , 𝑛 ∈ [𝑛𝑖𝑛𝑓, 𝑛𝑠𝑢𝑝] 𝑟𝑤 𝑟ℎ

such that and cluster eccentricity < . Additionally, each cluster was 𝑟𝑤, 𝑟ℎ ∈ [𝑟𝑖𝑛𝑓, 𝑟𝑠𝑢𝑝], 𝜀𝑚𝑎𝑥

oriented with an angle and its centroid was randomly positioned across the ROI. 𝜃 ∈ [0, 2𝜋]

10

Each cluster centroid was assigned a diffusion coefficient , and a right-
𝐷𝑐 ∈ [𝐷𝑐𝑖𝑛𝑓

, 𝐷𝑐𝑠𝑢𝑝
]

skewed randomly generated lifetime with a minimum and maximum . 𝑡𝑙𝑖𝑓𝑒 𝑡𝑙𝑖𝑓𝑒𝑚𝑖𝑛 𝑡𝑙𝑖𝑓𝑒𝑚𝑎𝑥

Once all clusters were generated inside the defined ROI (Supplementary Figure 8a), non-
clustered particles were added until the percentage of clustered particles reached a value

 (Supplementary Figure 8b). Due to memory limitations, the total number ~𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑒𝑑𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒

of particles in the simulated data cannot be larger than .𝑁𝑀𝐴𝑋

Supplementary Figure 8. Initialization steps of the simulations. a) Appearance of the simulated
datasets upon addition of all clustered particles (red) inside the ROI of width W and height H. b)
After all clusters were created, non-clustered single particles (black) were added.

ii) Particle and cluster dynamics

 Each clustered particle was allowed to move strictly inside its own cluster with a diffusion

coefficient between and , thus allowing the particle to diffuse slower or faster than

𝐷𝑐

2 𝐷𝑐 ∗ 2

the cluster centroid. Also, each given particle was allowed to be retained with a probability of
0.05 (i.e., allowing some particles that have no chance of being retained) and remain inside the

cluster seconds from a hypo-exponential distributed time defined by and 𝑡𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒
𝑡𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒1

. Particles non belonging to a cluster were allowed to move with a diffusion
𝑡𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒2

coefficient between and . Both clustered and non-clustered particles were assigned an 𝐷𝑖𝑛𝑓 𝐷𝑠𝑢𝑝

anomalous exponent while cluster centroids were asigned to follow Brownian 𝛼 ∈ [𝛼𝑚𝑖𝑛, 𝛼𝑚𝑎𝑥]

motion with a corresponding diffusion coefficient.

iii) Particle states

 Let us consider the topological condition of a particle as its “state”. There are 4 possible
states that a particle can assume as a function of time: (i) freely diffusing outside a cluster, i.e.,

11

not clustered; (ii) clustered; iii) leaving a cluster, or iv) immobile. When a particle stays in a

cluster (state (ii)) for a period > seconds, it transits to state (iii). When the particle 𝑡𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒

moves further away from the cluster centroid and leaves the cluster, it reacquires state (i), i.e.,
non-clustered, diffusing freely in a Brownian fashion. Each cluster is assigned an immobilization

function, , which determines the probability that a particle is immobilized in the 𝑓𝑖𝑚𝑚𝑜𝑏𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

cluster as a function of its position. If the particle remains immobile (i.e., in state (iv)), it
eventually leaves the cluster. Once it leaves the cluster, the particle has a 0.5 probability of
staying immobile or regaining free motion as an isolated particle. When a free moving particle
collides with a cluster, it instantly transitions from state (i) to state (ii). When a cluster
concludes its assigned lifetime, all particles transition back to state (i), and when all particles
leave the cluster, the latter disappears.

iv) Probability immobilization functions

 To model the probability of immobilization of a given particle depending on its position in

the cluster, we considered three probabilistic functions: (i) which models linear 𝑓𝑙𝑖𝑛𝑒𝑎𝑟

probability increases as the particle moves towards the cluster centroid; (ii) , which 𝑓𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐

models quadratic behaviour, and (iii) , which models region-dependent behaviour. 𝑓𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒

These three functions depend on cluster shape and on the maximum and minimum probability

of immobilization, annotated as and respectively. is defined as: 𝑝𝑚𝑎𝑥 𝑝𝑚𝑖𝑛 𝑓𝑙𝑖𝑛𝑒𝑎𝑟

𝑓𝑙𝑖𝑛𝑒𝑎𝑟(𝑥,𝑦) = ‒ (𝑥 ∗ (𝑝𝑚𝑎𝑥 ‒ 𝑝𝑚𝑖𝑛)
𝑟𝑤

2
)2 + (𝑦 ∗ (𝑝𝑚𝑎𝑥 ‒ 𝑝𝑚𝑖𝑛)

𝑟ℎ

2
)2

+ 𝑝𝑚𝑎𝑥

where , are the horizontal and vertical position of the particle relative to the cluster centroid 𝑥 𝑦

position, and are the width and height of the cluster, respectively.𝑟𝑤 𝑟ℎ

Then, is defined as:𝑓𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐

𝑓𝑟𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑗
(𝑥,𝑦) = ‒

(𝑥
1

(𝑝𝑚𝑎𝑥 ‒ 𝑝𝑚𝑖𝑛)
)2

(𝑟𝑤

2)2

‒

(𝑦
1

(𝑝𝑚𝑎𝑥 ‒ 𝑝𝑚𝑖𝑛)
)2

(𝑟ℎ

2)2

+ 𝑝𝑚𝑎𝑥

12

Finally, is defined as a composite function:𝑓𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒

𝑓𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒(𝑥,𝑦) = 𝑓(𝑥) = { 𝑝𝑚𝑖𝑛, 𝑖𝑓 (𝑥,𝑦) 𝑖𝑠 𝑖𝑛𝑠𝑖𝑑𝑒 𝑟𝑒𝑔𝑖𝑜𝑛 1

𝑝𝑚𝑖𝑛 +
𝑝𝑚𝑎𝑥 ‒ 𝑝𝑚𝑖𝑛

2
, 𝑖𝑓 (𝑥,𝑦) 𝑖𝑠 𝑖𝑛𝑠𝑖𝑑𝑒 𝑟𝑒𝑔𝑖𝑜𝑛 2

𝑝𝑚𝑎𝑥, 𝑖𝑓 (𝑥,𝑦) 𝑖𝑠 𝑖𝑛𝑠𝑖𝑑𝑒 𝑟𝑒𝑔𝑖𝑜𝑛 3
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

�

Supplementary Figure 9. Regions of the discrete function. a) shows the regions 1, 2 and 3
defined in the composite function. b), c) and d) show the dimensions of the ellipses that define

regions 1, 2, and 3, respectively. and are the length of the major and minor axis of the 𝑟ℎ 𝑟𝑤

defined ellipse of a nanocluster, respectively.

v) Cluster merging

 Two clusters were allowed to merge if they overlapped with each other. For the sake of
simplicity, the overlap is the number of particles that belong to the intersection of the
twoclusters. Such overlap is defined as:

𝑆(𝐶𝑗, 𝐶𝑖) =
|𝐶𝑗 ∩ 𝐶𝑖|
|𝐶𝑗 ∪ 𝐶𝑖|

where and are clusters. In this way, the overlap is the percentage of particles that belong 𝐶𝑗 𝐶𝑖

to both clusters simultaneously. It is a Jaccard index (Jaccard, 1901). If , the two 𝑆(𝐶𝑗, 𝐶𝑖) > 𝑆𝑚𝑖𝑛

clusters are merged.

vi) Modified Hosking method to simulate anomalous diffusion

 The Hosking method is an exact method to simulate trajectories that behave according to
fractional Brownian motion (fBm) (Hosking, 1984). This algorithm considers a trajectory length

 and an anomalous exponent and returns displacements as output 𝐿 𝛼 [Δ1, Δ2,…,Δ𝐿]

13

parameters. However, this algorithm is not applicable to the framework presented here,
because the particle is tracked and controlled step-by-step, thus allowing the generation of new
clusters, incorporation of particles into clusters, and particles leaving the clusters. Hence, the
trajectory cannot be generated instantaneously but step-by-step. We therefore introduced a

modified Hosking algorithm that considers the maximum length of the trajectory , a step , 𝐿𝑀𝐴𝑋 𝑙

and an anomalous exponent and returns the displacements such that 𝛼 [Δ1, Δ2,…,Δ𝑙] Δ𝑙

depends on the previous stored displacements. To implement this modified algorithm, we used
the Python modules stochastic and fbm. Trajectories were scaled as in the Andi Datasets
software package (Muñoz-Gil, 2023; Muñoz-Gil et al., 2021; Muñoz-Gil et al., 2020).

vii) Formation of new clusters

 At each step of the simulation, the framework scanned the ROI in search of new clusters.
Once all clusters and particles moved one step, a virtual and empty cluster was initialized as
described above. The procedure was iterated on the non-clustered particles to create new

clusters. If is a non-clustered particle, it was incorporated into a given cluster. Next, the 𝑃𝑖

nearest non-clustered particle, , was selected and added to the same virtual cluster, re-𝑃𝑖 + 1

setting the cluster centroid as the center of mass of both particles. If both particles fell inside
this newly generated cluster, the process was iterated, selecting more neighbouring particles
and repeating the process until a new particle could not be incorporated into the cluster
because it did not comply with the average centroid of the cluster. In this case, the non-fitting
particle was removed. The number of particles in the cluster was checked next: if it was greater

than , the cluster was no longer considered virtual, and its occurrence in the simulation was 𝑛𝑖𝑛𝑓

confirmed. The entire cluster generation procedure was iterated until all non-clustered particles
were taken into account.

viii) Localization dataset generation

 In STORM experiments, particles exhibit non-continuous blinking throughout the entire
duration of the imaging experiment. In the simulation process, particles were allowed to blink

between and consecutive frames. An average
𝑓𝑟𝑎𝑚𝑒𝑠𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒𝑠𝑚𝑖𝑛

𝑓𝑟𝑎𝑚𝑒𝑠𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒𝑠𝑚𝑎𝑥

between and of localizations was considered 𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑚𝑖𝑛 𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑚𝑎𝑥

per frame. Finally, a Gaussian-distributed noise was added to all localizations, with mean 𝜇𝑛𝑜𝑖𝑠𝑒

and standard deviation .𝜎𝑛𝑜𝑖𝑠𝑒

14

ix) Selected range of simulation parameters

 Some of the parameters used in the simulations (except for probability values, , and 𝑆𝑚𝑖𝑛

) are based on previous experimental work from our laboratory (Mosqueira et al.,
𝑡𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒𝑖

2018, 2020). Supplementary Table 1 shows the value of the simulation parameters. The
frequency distributions of simulation parameters at the beginning of each simulated
experiment (Supplementary Figure 10).

Supplementary Table 1. List of parameters used in the simulations

Parameter Value

𝑊 10 𝜇𝑚
𝐻 10 𝜇𝑚
𝑁𝑀𝐴𝑋 10,000 particles
𝑁𝐶𝐼𝑁𝐹

10 particles

𝑁𝐶𝑆𝑈𝑃
100 particles

𝑟𝑖𝑛𝑓 20 𝑛𝑚
𝑟𝑠𝑢𝑝 200 𝑛𝑚
𝐷𝑐𝑖𝑛𝑓 1 ∗ 10 ‒ 5 𝜇𝑚2/𝑠
𝐷𝑐𝑠𝑢𝑝 0.01 𝜇𝑚2/𝑠
𝐷𝑖𝑛𝑓 1 ∗ 10 ‒ 5 𝜇𝑚2/𝑠
𝐷𝑠𝑢𝑝 0.7 𝜇𝑚2/𝑠
𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑒𝑑𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝑚𝑖𝑛 ~0%
𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑒𝑑𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝑚𝑎𝑥 ~100%
𝑡𝑓𝑟𝑎𝑚𝑒 10 𝑚𝑠
𝑡𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒1

0.50 s

𝑡𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒2
0.02 s

𝜀𝑚𝑎𝑥 0.6
𝑡𝑙𝑖𝑓𝑒𝑚𝑖𝑛

25 frames

𝑡𝑙𝑖𝑓𝑒𝑚𝑎𝑥
7,000 frames

𝑝𝑚𝑖𝑛 0.01
𝑝𝑚𝑎𝑥 0.5

15

𝛼𝑚𝑖𝑛 0.1
𝛼𝑚𝑎𝑥 1.9
𝑆𝑚𝑖𝑛 10%

�̅� 40 nm
𝜎𝑒 10 nm
𝑓𝑟𝑎𝑚𝑒𝑠𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒𝑠𝑚𝑖𝑛

2 frames

𝑓𝑟𝑎𝑚𝑒𝑠𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒𝑠𝑚𝑎𝑥
5 frames

𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑚𝑖𝑛 10
𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑚𝑎𝑥 100

Supplementary Figure 10. Frequency distributions of initial values of some key variables in
the simulated datasets. The distribution of the initial percentage of molecules within a cluster
is depicted in the top-left histogram. The top-right histogram illustrates the distribution of the
number of particles in the experiment. The bottom-left histogram depicts the distribution of
the initial number of clusters. Finally, the distribution of the average number of locations per
frame is presented in the bottom-right histogram.

qSR implementation

16

 qSR is a MATLAB software designed to identify clusters in single-molecule data in fixed- or
live-cell samples (Andrews et al., 2018) using the DBSCAN algorithm. qSR v1.1.0
(https://www.github.com/cisselab/qSR/releases/tag/v1.1.0) was implemented as part of the
GNN algorithm benchmarking. A length scale of 0.1 µm, a temporal tolerance of 1 s, and a
minimum cluster size of 20 were chosen. The selected parameters are like those used in
(Mosqueira et al., 2020) for STORM and (Escamilla-Ayala et al., 2020) for PALM.

CAML implementation
 CAML v1.0 (https://gitlab.com/quokka79/caml/-/releases/v1.0) was implemented for
comparison with the GNN-based approach. We used the model 07VEJJ provided in the v1.0
release. We reutilized the validation and training datasets provided in https://osf.io/xa4zj/ .

NASTIC and segNASTIC implementation
 Parameter-based algorithms are easy to implement and settings to execute them are easy
to select. However, the selected parameters may not be constant across different datasets and
experimental conditions and results strongly rely on the initial choice of parameters and are
thus more prone to parameter-related biases, which may be subjective in nature. Some
algorithms are available, however, to automatically select parameters (Adeiza J. Onumanyi et
al., 2022). However, this strategy is not foolproof and may lead to overestimation of the
number of clusters (Suppl. Figure 7). In addition, parameter-based algorithms are generally
distance-based, and may not work correctly as the number of dimensions in the dataset
increases (Keogh & Mueen, 2017; Scurll, 2022).

 NASTIC and segNASTIC, two recently introduced algorithms to analyze clusters based on
trajectories’ overlap, are examples of methodologies where the parameters condition the
results (Wallis et al., 2023). NASTIC and segNASTIC require, along with other parameters, time
thresholds. It is not possible to detect cluster durations below half the time threshold in NASTIC
(minimum cluster duration obtained was 0.62 s with a threshold of 1 s). Decreasing this
threshold -and hence the overlap- led to total failure in detecting clusters, whereas increasing
the threshold led to detection of only spatial clustering (Wallis et al., 2023). In contrast,
segNASTIC detected shorter cluster durations with the same threshold time (minimum cluster
duration obtained was 0.1 ms, below the frame rate). Clearly, results are conditioned by the
selected parameters and parameter selection is hard to determine. Additionally, the GNN-
based algorithm does not require experimental trajectory data, a step that is required by both
NASTIC and segNASTIC.

Suppl. Figure 11 depicts in graphic form the results obtained with NASTIC and segNASTIC and
those resulting from the current GNN-based approach on a representative STORM
experimental dataset. Application of NASTIC and segNASTIC to the present experimental

http://www.github.com/cisselab/qSR/releases/tag/v1.1.0
https://gitlab.com/quokka79/caml/-/releases/v1.0
https://osf.io/xa4zj/

17

STORM and TIRF datasets produced clusters with durations of 41.39 ± 7.16 s and 23.95 ± 5.55 s,
respectively, which appear to be overestimated. In addition, the calculated radii in STORM
datasets were 78 nm ± 4nm (NASTIC) and 30 nm ± 3nm (segNASTIC), two values that appear to
be underestimated.

Suppl. Figure 12 further illustrates they key spatiotemporal cluster metrics (duration and size)
resulting from application of NASTIC and segNASTIC to STORM datasets.

Supplementary Figure 11. Comparison of the NASTIC and segNASTIC spatiotemporal cluster
indexing detection technique (Wallis et al., 2023) with the current GNN-based method. The
upper row shows an experimental dataset of nAChR particles labelled with fluorescent
bungarotoxin. The lower rows expand the ROIs outlined by the black dashed boxes in the upper
row. The contours that surround clusters are their convex hulls. Each convex hull is assigned a
colour according to the average acquisition time of the particles contained in them. The

coloured bar in each lower-left corner shows and (15 s and 20 s, respectively). NASTIC 𝑡𝑚𝑖𝑛 𝑡𝑚𝑎𝑥

and segNASTIC fall short of detecting cluster processes that the GNN algorithm identifies
successfully. NASTIC v1.0.6 analysis (https://github.com/tristanwallis/smlm_
clustering/releases/tag/v1.0.6) was performed with a time threshold of 1 s and a radius factor
1.2. In the case of segNASTIC (which is included in NASTIC v1.0.6), time was set with a threshold

https://github.com/tristanwallis/smlm_%20clustering/releases/tag/v1.0.6
https://github.com/tristanwallis/smlm_%20clustering/releases/tag/v1.0.6

18

of 1 s, a radius factor 1.2, a segment threshold of 5, an overlap threshold override of 0, and
cluster size screen of 0.15 µm.

Supplementary Figure 12. Cluster metrics resulting from application of NASTIC and segNASTIC
on STORM datasets.

Statistical Analysis

All statistical analyses were implemented using the Prism GraphPad 8 software. Correlations
were measured with a two-tailed nonparametric Spearman correlation with a confidence
interval of 95% and a significance threshold of 0.05 (level at which the null hypothesis is
rejected). To compare two distributions, we used the Kolmogorov-Smirnov (KS) test for two
samples. To compare more than two distributions, we used the Kruskal-Wallis (KW) test. Mean
± 95% confidence intervals are shown unless otherwise stated. No data points were excluded.
ARI and F1-Score were measured using Scikit-Learn Python library implementation.

References
Andrews, J. O., Conway, W., Cho, W. K., Narayanan, A., Spille, J. H., Jayanth, N., Inoue, T., Mullen, S.,

Thaler, J., & Cissé, I. I. (2018). qSR: a quantitative super-resolution analysis tool reveals the cell-
cycle dependent organization of RNA Polymerase I in live human cells. Sci Rep, 8(1), 7424.
https://doi.org/10.1038/s41598-018-25454-0

Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D. S., & Smith, K. (2011). Cython: The Best of
Both Worlds. Computing in Science & Engineering, 13(2), 31-39.
https://doi.org/10.1109/mcse.2010.118

Escamilla-Ayala, A. A., Sannerud, R., Mondin, M., Poersch, K., Vermeire, W., Paparelli, L., Berlage, C.,
Koenig, M., Chavez-Gutierrez, L., Ulbrich, M. H., Munck, S., Mizuno, H., & Annaert, W. (2020).
Super-resolution microscopy reveals majorly mono- and dimeric presenilin1/γ-secretase at the
cell surface. eLife, 9, e56679. https://doi.org/10.7554/eLife.56679

https://doi.org/10.1038/s41598-018-25454-0
https://doi.org/10.1109/mcse.2010.118
https://doi.org/10.7554/eLife.56679

19

Esposito, C., Landrum, G. A., Schneider, N., Stiefl, N., & Riniker, S. (2021). GHOST: Adjusting the Decision
Threshold to Handle Imbalanced Data in Machine Learning. Journal of Chemical Information and
Modeling, 61(6), 2623-2640. https://doi.org/10.1021/acs.jcim.1c00160

Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in
large spatial databases with noise Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining, Portland, Oregon.

Hendrycks, D., Gimpel, K. (2016). Gaussian error linear units (GELUs). arXiv E-prints, arXiv:1606.08415.
Hosking, J. R. M. (1984). Modeling persistence in hydrological time series using fractional differencing.

Water Resources Research, 20(12), 1898-1908.
https://doi.org/https://doi.org/10.1029/WR020i012p01898

Keogh, E., & Mueen, A. (2017). Curse of Dimensionality. In C. Sammut & G. I. Webb (Eds.), Encyclopedia
of Machine Learning and Data Mining (pp. 314-315). Springer US. https://doi.org/10.1007/978-
1-4899-7687-1_192

Midtvedt, B., Helgadottir, S., Argun, A., Pineda, J., Midtvedt, D., & Volpe, G. (2021). Quantitative digital
microscopy with deep learning. Applied Physics Reviews, 8(1).
https://doi.org/10.1063/5.0034891

Mosqueira, A., Camino, P. A., & Barrantes, F. J. (2018). Cholesterol modulates acetylcholine receptor
diffusion by tuning confinement sojourns and nanocluster stability. Sci Rep, 8(1), 11974.
https://doi.org/10.1038/s41598-018-30384-y

Mosqueira, A., Camino, P. A., & Barrantes, F. J. (2020). Antibody-induced crosslinking and cholesterol-
sensitive, anomalous diffusion of nicotinic acetylcholine receptors. J Neurochem, 152(6), 663-
674. https://doi.org/10.1111/jnc.14905

Muñoz-Gil, G. (2023). AnDiChallenge/andi_datasets: andi_datasets 2.0.0 release. In (Version v.2.0)
Zenodo. https://doi.org/10.5281/zenodo.8005576http://dx.doi.org/10.5281/zenodo.8005576

Muñoz-Gil, G., Volpe, G., Garcia-March, M. A., Aghion, E., Argun, A., Hong, C. B., Bland, T., Bo, S.,
Conejero, J. A., Firbas, N., Garibo i Orts, Ò., Gentili, A., Huang, Z., Jeon, J.-H., Kabbech, H., Kim, Y.,
Kowalek, P., Krapf, D., Loch-Olszewska, H., . . . Manzo, C. (2021). Objective comparison of
methods to decode anomalous diffusion. Nature Communications, 12(1), 6253.
https://doi.org/10.1038/s41467-021-26320-w

Muñoz-Gil, G., Volpe, G., García-March, M. A., Metzler, R., Lewenstein, M., & Manzo, C. (2020). The
anomalous diffusion challenge: single trajectory characterisation as a competition (Vol. 11469).
SPIE. https://doi.org/10.1117/12.2567914

Onumanyi, A. J., Molokomme, D. N., Isaac, S. J., & Abu-Mahfouz, A. M. (2022). AutoElbow: An Automatic
Elbow Detection Method for Estimating the Number of Clusters in a Dataset. Applied Sciences,
12(15), 7515. https://doi.org/10.3390/app12157515

Onumanyi, A. J., Molokomme, D. N., Isaac, S. J., & Abu-Mahfouz, A. M. (2022). AutoElbow: An Automatic
Elbow Detection Method for Estimating the Number of Clusters in a Dataset. Applied Sciences,
12(15).

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., &
Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning
Research, 12(85), 2825-2830. http://jmlr.org/papers/v12/pedregosa11a.html

Pineda, B., Pérez de la Cruz, V., Hernández Pando, R., & Sotelo, J. (2021). Quinacrine as a potential
treatment for COVID-19 virus infection. Eur Rev Med Pharmacol Sci, 25(1), 556-566.
https://doi.org/10.26355/eurrev_202101_24428

https://doi.org/10.1021/acs.jcim.1c00160
https://doi.org/https://doi.org/10.1029/WR020i012p01898
https://doi.org/10.1007/978-1-4899-7687-1_192
https://doi.org/10.1007/978-1-4899-7687-1_192
https://doi.org/10.1063/5.0034891
https://doi.org/10.1038/s41598-018-30384-y
https://doi.org/10.1111/jnc.14905
https://doi.org/10.5281/zenodo.8005576http://dx.doi.org/10.5281/zenodo.8005576
https://doi.org/10.1038/s41467-021-26320-w
https://doi.org/10.1117/12.2567914
https://doi.org/10.3390/app12157515
http://jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.26355/eurrev_202101_24428

20

Pineda, J., Midtvedt, B., Bachimanchi, H., Noé, S., Midtvedt, D., Volpe, G., & Manzo, C. (2023). Geometric
deep learning reveals the spatiotemporal features of microscopic motion. Nature Machine
Intelligence, 5(1), 71-82. https://doi.org/10.1038/s42256-022-00595-0

Scurll, J. M. (2022). Measuring inter-cluster similarities with Alpha Shape TRIangulation in loCal
Subspaces (ASTRICS) facilitates visualization and clustering of high-dimensional data [preprint].
arXiv.

Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal,
27(3), 379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E.,
Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J.,
Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., . . . SciPy, C. (2020). SciPy 1.0:
fundamental algorithms for scientific computing in Python. Nat Methods, 17(3), 261-272.
https://doi.org/10.1038/s41592-019-0686-2

Wallis, T. P., Jiang, A., Young, K., Hou, H., Kudo, K., McCann, A. J., Durisic, N., Joensuu, M., Oelz, D.,
Nguyen, H., Gormal, R. S., & Meunier, F. A. (2023). Super-resolved trajectory-derived
nanoclustering analysis using spatiotemporal indexing. Nature Communications, 14(1), 3353.
https://doi.org/10.1038/s41467-023-38866-y

Williamson, D. J., Burn, G. L., Simoncelli, S., Griffié, J., Peters, R., Davis, D. M., & Owen, D. M. (2020).
Machine learning for cluster analysis of localization microscopy data. Nat Commun, 11(1), 1493.
https://doi.org/10.1038/s41467-020-15293-x

https://doi.org/10.1038/s42256-022-00595-0
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41467-023-38866-y
https://doi.org/10.1038/s41467-020-15293-x

