Supporting Information

Achieving a balance of rapid Zn^{2+} desolvation and hydrogen evolution reaction

inertia on the interface of Zn anode by hydrophilic transition metal oxides

Xiaofen Xiao*a, Deqiang Wanga, Guangyi Xua, Zhuxiang Zhanga, Jun Lia,b, Shun Wanga, Yifei Yuana,

Chuangang Hu^c and Huile Jin*a,b

 Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
 Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang 325035, China

3 State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China

Fig. S1. (a) The XRD patterns of CeO₂ coated Zn foil, (b) crystal structure of CeO₂.

The chemical structure of $CeO_2@Zn$ is also characterized as shown in Fig. S2, where the main XRD peaks of the modified Zn anode could be ascribed to the standard CeO₂ (PDF#43-1002), proving that the modified layer of CeO₂ keeps stable in the open air.

Fig. S2. (a) The XRD patterns of MnO_2 powders and (b) the structure of α -MnO₂ used. It shows the crystalline phase of α -MnO₂ (JCPDS: 44-0141).

Fig. S3. TEM image of MnO_2 powders used in our experiment. It shows the tunable nanorod morphology of α -MnO₂.

Fig. S4. The cross-section SEM images of the cycled Zn plates: (a) bare Zn and (b) CeO₂@Zn.

Fig. S5. GCD profiles of the aqueous $Zn//MnO_2$ and $CeO_2@Zn//MnO_2$ batteries at C-rate of 0.2-2.0 C corresponding to Fig. 3-6d.

Fig. S6. The first charge/discharge profiles of $Zn//MnO_2$ and $CeO2@MnO_2$ under 0.2 C (corresponding to the data in Fig. 4d).

It can be seen from Fig. S6 that the specific capacity was 169.36 mAh g^{-1} and 165.26 mAh g^{-1} , for Zn//MnO₂ and CeO₂@Zn//MnO₂ full cells, respectively.

Fig. S7. Nyquist plots of Zn//Zn and CeO₂@Zn//CeO₂@Zn under different cycling numbers.

Fig. S8. (a) the digital photo of $CeO_2@Zn$ and Zn immersed in 2 M ZnSO₄ for 7 days, (b) the corresponding XRD patterns of (a).

Fig. S9. Rate capability of CeO₂@Zn and Zn symmetry batteries.

Fig. S10. Voltage profiles of symmetric cells based on Zn foil and CeO₂@Zn anode at 20 mA cm⁻² with a total capacity of 20 mAh cm⁻².

Fig. S11. CE of the symmetric Zn//Zn and $CeO_2@Zn//CeO_2@Zn$ at a current density of 20 mA cm⁻² with a total capacity of 20 mAh cm⁻². (corresponding to **Fig. S10**).

Fig. S12. CE of the symmetric Zn//Zn and CeO₂@Zn//CeO₂@Zn at a current density of (a) 2.0 mA cm⁻² with a total capacity of 1.0 mAh cm⁻², (b) 5 mA cm⁻² with a total capacity of 10 mAh cm⁻² and (c) 5 mA cm⁻² with a total capacity of 2.5 mAh cm⁻². (corresponding to **Fig. 2a-c**)

Fig. S13. CE of the asymmetric Zn//Ti, PVDF@Ti and Zn //CeO₂@Ti at 5.0 mA cm⁻², 2.5 mAh cm⁻² with an end charging voltage of 0.5 V (The thickness of the Zn foil here was 30µm).

Fig. S14. Overpotential evolution of symmetric Zn//Zn and $CeO_2@Zn//CeO_2@Zn$ cells at a current density of 2.0 mA cm⁻² with a total capacity of 1.0 mAh cm⁻².

In Zn//Zn cell, each Zn²⁺ deposition process has a typical nucleation overpotential. However, there is no obvious nucleation overpotential in the overpotential evolution curve of $CeO_2@Zn//CeO_2@Zn$ cell except the initial nucleation overpotential, which shows that CeO_2 coating layer reduces the energy barrier of Zn²⁺ nucleation and changes the deposition process of Zn²⁺ compared with that of bare Zn.

Table S1. Comparison of electrochemical properties of the reported Zn anode after being optimized in various electrolytes.

Strategies	Cycling performance of symmetrical Zn	Volta Hysteresis	References
	battery	(mV)	
CeO2@Zn	$\frac{1600 \text{ h} (2 \text{ mA/cm}^2 \text{ 1 mAh/cm}^2)}{1600 \text{ h} (2 \text{ mA/cm}^2 \text{ 1 mAh/cm}^2)}$	~ 50	This work
00020020	$750 \text{ h} (5 \text{ mA/cm}^2 2.5 \text{ mAh/cm}^2)$	~	
	$150 \text{ h} (5 \text{ mA/cm}^2 10 \text{ mA/cm}^2)$	~ 50	-
PVDF-TiO2-Zn	$2000 \text{ h} (0.885 \text{ mA/cm}^2 \ 0.885 \text{ mA/cm}^2)$	< 50	Adv. Funct. Mater. 2020
1 VD1-110 <u>7</u> -211	$250 \text{ h} (20 \text{ m} \text{ A/cm}^2 10 \text{ m} \text{ A/cm}^2)$	~ 50	2001867
7n	$200 \text{ h} (0.885 \text{ mA/cm}^2 + 0.885 \text{ mA/cm}^2)$	70	2001007
	$\leq 20 \text{ k} (20 \text{ m A/cm}^2, 10 \text{ m A/cm}^2)$	~ 70	-
	< 30 h (20 mA/cm², 10 mAn/cm²)	~	<u> </u>
Electrodopsition CN1-Zn	$200 \text{ h} (2 \text{ mA/cm}^2, 2 \text{ mAh/cm}^2)$	27	Adv. Mater. 2019, 31,
	110 h (5 mA/cm ² , 2.5 mAh/cm ²)	68	1903675
Zn foil	43 h (5 mA/cm ² , 2.5 mAh/cm ²)	79	-
Electrodopsition CC-Zn	53 h (2 mA/cm ² , 2 mAh/cm ²)	34	
TiO ₂ @Zn	460 h (1 mA/cm ² , 1 mAh/cm ²)	~	Nat Commun 11, 3961
	280 h (2 mA/cm ² , 2 mAh/cm ²)		(2020).
nano-CaCO3 @Zn foil	836 h (0.25 mA/cm ² , 0.05 mAh/cm ²)	80	Adv. Energy Mater. 2018,
nano-SiO2@Zn foil	~ 400 h (0.25 mA/cm ² , 0.05 mAh/cm ²)		8, 1801090
Bare Zn foil	55 h (0.25 mA/cm ² , 0.05 mAh/cm ²)	230	
ZnS @	1100 h (2mA/cm ² , 2 mAh/cm ²)	98	Adv. Mater. 2020, 32,
Zn-350			2003021
Bare Zn	100 h (2mA/cm ² , 2 mAh/cm ²)	150	
ZIF-8@Zn	1200 h (2mA/cm ² , 2 mAh/cm ²)	58	Adv. Sci. 2020, 7,
			2002173
ZIF-8-500@Zn	200 cycles (1 mA/cm ² , 2 mAh/cm ²)		Joule 3, 1289–1300, May
			15, 2019
polyamide-Zn	8000 h (0.5 mA/cm ² , 0.25 mAh/cm ²)	~100	Energy Environ. Sci.,
	(10 mA/cm ² , 10 mAh/cm ²)		2019, 12, 19381949
cyanoacrylate 502 glue-Zn	800 h (0.5 mA/cm ² , 0.25 mAh/cm ²)	~	Energy Storage Materials
	400 h (2 mA/cm ² , 1 mAh/cm ²)	91.3	36 (2021) 132-138.
In(OH)2@Zn	1500 h (0.2 mA/cm ² , 0.2 mAh/cm ²)	54	Small 2020, 16, 2001736.