Electronic Supplementary Information

Shape-Dependent Cell Uptake of Iron Oxide Nanorods: Mechanisms of

Endocytosis and Implications on Cell Labeling and Cellular Delivery

Anbu Mozhi Thamizhchelvan^a, Hedi Ma^b, Tianhe Wu^a, Darlene Nguyen^a, Jonathan Pedelford^b, Ted J. Whitworth^c, Yuancheng Li^{a,b}, Lily Yang^{d,e} and Hui Mao^{a,e,*}

^a Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA.

^b 5M Biomed, LLC, Atlanta, Georgia 30303, USA.

^c Robert P. Apkarian Integrated Electron Microscopy Core, Emory University School of Medicine, Atlanta, Georgia 30322, USA.

^d Department of Surgery, Emory University School of Medicine, Atlanta, Georgia 30322, USA.

^e Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA.

Corresponding Author

*Hui Mao, PhD, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30329, USA, E-mail: hmao@emory.edu

Fig. S1 Transmission electron microscopy (TEM) images of oleylamine coated (a) $IONR_{(L)}$, (b) $IONR_{(S)}$, and (c) IONP. The size distributions of oligosaccharide coated (d) $IONR_{(L)}$, (e) $IONR_{(S)}$, and (f) IONP were obtained after measuring 50 particles in the field of view.

Fig. S2 Fourier transform infrared (FTIR) spectra of oleylamine coated IONR (black) and oligosaccharide-coated IONR (red).

Fig. S3 Comparison of cytotoxicity of oligosaccharide coated $IONR_{(L)}$, $IONR_{(S)}$, and IONP on different cell lines measured by MTT assay. (a) RAW264.7 (murine macrophage cells), (b) HEK293 (Normal embryonic kidney cells) (c) D556 (Medulloblastoma cells), and (d) MDA-MB-453 (triple negative breast cancer cells) were treated by $IONR_{(L)}$, $IONR_{(S)}$, and IONP at different concentrations for 48 h. Data are presented as mean values (n = 3) with the standard deviations.

Fig. S4 TEM images of Raw264.7 (murine macrophage cells) collected after 2 h hours treatment with oligosaccharide-coated (a-c) $IONR_{(L)}$ and (d, e) $IONR_{(S)}$, and (f) IONP at the concentration of 50 µg Fe/mL. Green Arrow – Clathrin-mediated (clathrin-coated pits); Blue arrow – Macropinocytosis (macropinosomes); Magenta arrow – Phagocytosis; Red arrow – Sinking Phagocytosis. Scale bar indicates 100 nm, 0.2 µm, and 0.1 µm.

Fig. S5 TEM images of different cells at 2 h time point of treatment with different nanoparticles at the concentration of 50 μ g Fe/mL. HEK293 embryonic kidney cells treated with oligosaccharide-coated (a) IONR_(L) (b) IONR_(S) and (c) IONP; D556 human medulloblastoma cells treated with (d, e) IONR_(L), (f) IONR_(S), and (g, h) IONP; Green arrow – Clathrin-mediated (clathrin-coated pits); Brown arrow – Caveolae-mediated (flask-shaped structures); Blue arrow – Macropinocytosis (macropinosomes); Scale bar indicates 50 nm, 100 nm, and 0.2 μ m.

Fig. S6 TEM images of D556 human medulloblastoma cells collected at the 2 h time point of treatment with spherical nanoparticle SHP-10 (IONP with the core size of 10 nm) at the concentration of 50 μ g Fe/mL. (a) Magenta arrow - phagosome sealing and blue arrow – macropinocytosis; (b) Enlarged region selected from the field of view in the image (a) showing SHP-10 internalized in the phagocytic cup, leading to phagosome sealing; (c) Green arrow – Clathrin-mediated (clathrin-coated pits); and (d) localization of SHP-10 inside the endolysosomal compartment at 4 h time point of the treatment. Scale bar indicates 100 nm, 200 nm, and 0.5 μ m.

Fig. S7 TEM images of D556 human medulloblastoma cells treated with spherical nanoparticle Ferumoxytol (core size 7-10 nm) at the concentration of 50 μ g Fe/mL after 2 hours. (a) Blue arrow – macropinocytosis; (b) Ferumoxytol accumulated in the mitochondria; (c) Ferumoxytol accumulated in the endosomes, nucleus and rough endoplasmic reticulum (magenta arrow) at 4 h time point. Green arrow – Clathrin-mediated (clathrin-coated pits). Scale bar indicates 500 nm.

Fig. S8 A TEM image of a D556human medulloblastoma cell (a) treated with oligosaccharidecoated $IONR_{(L)}$ at the concentration of 50 µg Fe/mL. (b) Schematic illustration of different endocytosis pathways of internalization of $IONR_{(L)}$ by D556 cells. Green arrow – Clathrinmediated (clathrin-coated pits); Brown arrow – Caveolae-mediated (flask-shaped structures); Blue arrow – Macropinocytosis (macropinosomes); Magenta arrow – Actin filaments; The scale bar indicates 0.5 µm.

Fig. S9 CLSM images with dichlorodihydrofluorescein (DCF) staining for detection of intracellular reactive oxygen species (ROS) levels in RAW 264.7 cells after being treated with different oligosaccharide coated IONR_(L), IONR_(S), and IONP for 24 h. The ROS (green signal from DCF) level was measured using DCFH-DA. The positive control was treated with 30% hydrogen peroxide (H₂O₂) in a serum-free medium at a ratio of 1:1000 for 20 min. Nucleus stained with Hoechst – blue. The cells without nanoparticle treatment were used as a control group. The scale bar indicates 1 µm and 40 × objective lens.

Fig. S10 CLSM images with DCF for detection of intracellular ROS levels in D556 cell lines after being treated with different oligosaccharide coated $IONR_{(L)}$, $IONR_{(S)}$, and IONP for 24 h. The positive control was treated with 30% hydrogen peroxide (H₂O₂) in a serum-free medium at a ratio of 1:1000 for 20 min. The ROS (green signal from DCF) level was measured using DCFH-DA. Nucleus stained with Hoechst – blue. The cells without nanoparticle treatment were used as a control group. The scale bar indicates 1 µm and 40 × objective lens.

Fig. S11 CLSM images show changes in mitochondrial membrane potential ($\Delta \psi$ m) in RAW 264.7 cell lines after being treated with different oligosaccharide coated IONR_(L), IONR_(S), and IONP for 24 h. The scale bar indicates 1 µm and 40 × objective lens.

Fig. S12 CLSM images show changes in mitochondrial membrane potential ($\Delta \psi$ m) in D556 cell lines after being treated with different oligosaccharide coated IONR_(L), IONR_(S), and IONP for 24 h. The scale bar indicates 1 µm and 40 × objective lens.