Supplementary Information

Bi-doped Ruthenium Oxide Nanocrystal for Water Oxidation in Acidic Media

Shiyao Chen^a, Hai Liu^a, Bichen Yuan^a, Wenhai Xu^a, Aiqing Cao^a, Marshet Getaye Sendeku^b, Yaping Li^{a,*}, Xiaoming Sun^{a,*}, Fengmei Wang^{a,*}

- a. State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
- b. Ocean Hydrogen Energy R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen, P. R. China.

*E-mail: wangfm@buct.edu.cn; sunxm@mail.buct.edu.cn; liyp@mail.buct.edu.cn

Supplementary Note 1

The Gibbs free energy of absorbed species (G_{*ads}) can be computed using following equation¹:

$$G_{*ads} = E + ZPE - TS$$

In this equation, **ads* represents the adsorbed species, such as *OH, *O, *OOH, or *H. The term G represents the Gibbs free energy of the adsorbed species, while E refers to the energy obtained from Density Functional Theory (DFT) calculation, *ZPE* stands for zero-point energy, S represents entropy and T denotes the temperature, which was set at 298.15 K for this study.

The oxygen evolution reaction (OER) under acidic conditions, a four-electron transfer process, comprises four distinct reaction steps (Figure 4a, 4b). Both AEM and LOM mechanisms share the common initial stages, which are evaluated using Equations 1 and 2. Subsequently, AEM proceeds with the next two stages, calculated by Equations 3 and 4 (Figure 4a),² whereas LOM continues with Equations 5 and 6 (Figure 4b).³ The Gibbs free energy of $(H^+ + e^-)$ at standard conditions is assumed as the free energy of 1/2 H₂.

$$H_2O + * \leftrightarrow HO^* + H^+ + e^-$$
 (equation 1)

$$\Delta G_I = \Delta G_{HO^*} + 1/2\Delta G_{H_2} - \Delta G_* - \Delta G_{H_2O} - eU$$

$$HO^* \leftrightarrow O^* + H^+ + e^- \qquad (equation 2)$$

$$\Delta G_2 = \Delta G_{O^*} + 1/2\Delta G_{H_2} - \Delta G_{HO^*} - eU$$

$$O^* + H_2O \leftrightarrow HOO^* + H^+ + e^- \qquad (equation 3)$$

$$\Delta G_3 = \Delta G_{HOO^*} + 1/2\Delta G_{H_2} - \Delta G_{O^*} - \Delta G_{H_2O} - eU$$

$$HOO^* \leftrightarrow \blacksquare + O_2 + H^+ + e^- \qquad (equation 4)$$

$$\Delta G_4 = \Delta G_* + 1/2\Delta G_{H_2} + \Delta G_{O_2} - \Delta G_{HOO}^* - eU$$

$$O^* + H_2O \leftrightarrow H^* + H^+ + e^- + O_2 \qquad (equation 5)$$

$$\Delta G'_{3} = \Delta G_{H^{*}} + 1/2\Delta G_{H_{2}} + \Delta G_{O_{2}} - \Delta G_{O^{*}} - \Delta G_{H_{2}O} - eU$$

$$H^{*} \leftrightarrow \blacksquare + H^{+} + e^{-} \qquad (equation 6)$$

$$\Delta G'_{4} = \Delta G_{*} + 1/2\Delta G_{H_{2}} - \Delta G_{H^{*}} - eU$$

In this work, $\Delta G_{I-4}^{(\prime)}$ values were calculated at U=0 V.

Supplementary Note 2

To clarify the effect of varying loadings on the activity of the $Bi_{0.05}Ru_{0.95}O_2$ catalyst, the Turnover Frequency (TOF) value was calculated.

$$\text{TOF} = \frac{J * A}{4 * e * n}$$

J is current density obtained at 1.5 V (vs. RHE) and normalized by geometric area; *A* is the geometric area; e is the charge of electron (1.602 * 10^{-19} C) and *n* is the number of active sites, calculated *via* the following equation.

This method is calculating based on all Ru atoms, from the following equation:

$$n = \frac{m_{loading} * N_A}{M_W} * n_{metal}$$

where $m_{loading}$ is the loading mass of catalyst on carbon paper, n_{metal} is the mole number of metal atoms such as Ru per mole of electrocatalysts and M_w is the molecular weight of catalyst.

Figure S1 Slab model of $Bi_2Ru_{34}O_{72}$ after structural optimization.

Figure S2 Slab model of RuO_2 after structural optimization.

Figure S3 Slab model of Bi-Ov-RuO2 after structural optimization.

Figure S4 TEM image of $\mathrm{Bi}_{0.05}\mathrm{Ru}_{0.95}\mathrm{O}_2$, inset showing particle size distribution.

Figure S5 TEM image of HM-RuO $_2$, inset showing particle size distribution.

Figure S6 TEM image of C-RuO₂.

Figure S7 HRTEM image of C-RuO₂.

Figure S8 SEM images of HM-RuO₂, Bi_{0.03}Ru_{0.97}O₂, Bi_{0.05}Ru_{0.95}O₂, Bi_{0.10}Ru_{0.90}O₂.

Figure S9 SEM image of C-RuO₂.

Figure S10 O *Is* XPS spectra of Bi_{0.05}Ru_{0.95}O₂, HM-RuO₂ and C-RuO₂. More details are shown in Table S2.

Figure S11 C_{d1} linear fitting plot of Bi_xRu_{1-x}O₂, Sb_{0.04}Ru_{0.96}O₂, HM-RuO₂ and C-RuO₂ derived from CV curves.

Figure S12 Comparison of electrochemical active surface areas of Bi_xRu_{1-x}O₂ and C-RuO₂.

Figure S13 Specific activity curves of $Bi_xRu_{1-x}O_2$, HM-RuO₂ and C-RuO₂ electrode collected at the scan rate of 5 mV s⁻¹ in 0.5 M H₂SO₄ electrolyte.

Figure S14 EIS plot of $Bi_{0.05}Ru_{0.95}O_2$, HM-RuO₂ and C-RuO₂ at a voltage (init E) of 1.24 V in 0.5 M H₂SO₄ electrolyte. The frequency range for testing is from 100 kHz to 1 Hz.

Figure S15 Chronopotentiometry tests of $Bi_x Ru_{1-x}O_2$ at 100 mA cm⁻² in 0.5 M H₂SO₄ electrolyte.

Figure S16 Comparison of activity (overpotential@10 mA cm⁻²) and stability (at 100 mA cm⁻²) among various $Bi_xRu_{1-x}O_2$.

Figure S17 Turnover frequency comparison of Bi_xRu_{1-x}O₂, HM-RuO₂ and C-RuO₂.

Figure S18 Chronopotentiometry test of $Bi_{0.05}Ru_{0.95}O_2$ in 0.5 M H₂SO₄ electrolyte at 100 mA cm⁻² for 188 h. The electrode after the stability test was used for subsequent tests.

Figure S19 EIS plots of Bi_{0.05}Ru_{0.95}O₂ at a voltage (init E) of 1.24 V in 0.5 M H₂SO₄ electrolyte before and after 188-h stability test at 100mA cm⁻². The frequency range for testing is from 100 kHz to 1 Hz.

Figure S20 Polarization curves at the scan rate of 5 mV s⁻¹ for $Bi_{0.05}Ru_{0.95}O_2$ electrode in 0.5 M H₂SO₄ electrolyte before and after 188-h stability test at 100mA cm⁻².

Figure S21 Comparison of decay rate (mV h⁻¹) between Bi_{0.05}Ru_{0.95}O₂, Sb_{0.04}Ru_{0.96}O₂ and recently-reported Ru- and Ir-based catalysts at their reported current density.

Figure S22. In-situ Raman spectra collected form Bi_{0.05}Ru_{0.95}O₂ catalyst in 0.1 M HClO₄.

Figure S23 XRD patterns of $Sb_{0.04}Ru_{0.96}O_2$ and C-RuO₂.

Figure S24 SEM image of $Sb_{0.04}Ru_{0.96}O_2$.

Figure S25 Element mapping of Sb_{0.04}Ru_{0.96}O₂.

Figure S26 Polarization curves at the scan rate of 5 mV s⁻¹ for Sb_{0.04}Ru_{0.96}O₂ and Bi_{0.05}Ru_{0.95}O₂ electrodes in 0.5 M H₂SO₄ electrolyte.

Figure S27 Stability test of Sb_{0.04}Ru_{0.96}O₂ electrode at the current density of 100 mA cm⁻² in

 $0.5\ M\ H_2SO_4.$

Figure S28 Log (I (A cm⁻²)) of $Bi_{0.05}Ru_{0.95}O_2$ electrode at 1.45 V vs. RHE as a function of pH.

Figure S29 The demetalisation energies of RuO_2 , $Bi_2Ru_{34}O_{72}$ and $Bi-O_v$ - RuO_2 .

samples.				
Sample	Element	Atomic ratio [%]		
Bi _{0.03} Ru _{0.97} O ₂	Bi	2.50		
	Ru	97.50		
Bi _{0.05} Ru _{0.95} O ₂	Bi	4.82		
	Ru	95.18		
Bi _{0.10} Ru _{0.90} O ₂	Bi	9.90		
	Ru	90.10		

Table S1 The atomic ratio of Ru and Bi collected from EDS analysis of various $\mathrm{Bi}_x\mathrm{Ru}_{1\text{-}x}\mathrm{O}_2$

Table S2 Fitting results of the O ls XPS spectra for $Bi_{0.05}Ru_{0.95}O_2$, HM-RuO₂ and C-RuO₂

(after carbon-correction).								
	OL		М-ОН		Ov		O _{ads}	
Samples	Position	Area	Position	Area	Position	Area	Position	Area
	/eV	(ratio)	/eV	(ratio)	/eV	(ratio)	/eV	(ratio)
C BuO	577 19	24156	528.06	38244	520.58	16210	521.01	23742
$C-RuO_2$ 527.	327.40	(23.6%)	6%)	(37.4%)	529.58	(15.8%)	551.01	(23.2%)
HM PuO.	577 22	17551	528.06	29686	520.58	19745	530.08	28473
HM-RuO ₂ 527.55	527.55	(18.4%)	528.00	(31.1%)	529.58	(20.7%)	550.98	(29.8%)
Pier Puer O	527.24	27824	527.06	41922	520.58	26244	531.01	17996
$D_{10.05}$ $Ru_{0.95}$ O_2	527.24	(24.4%)	521.90	(36.8%)	529.50	(23.0%)	551.01	(15.8%)

Samples	Overpotential/mV
HM-RuO ₂	227.8
Bi _{0.03} Ru _{0.97} O ₂	213.2
Bi _{0.05} Ru _{0.95} O ₂	203.5
${ m Bi}_{0.10}{ m Ru}_{0.90}{ m O}_2$	207.8
C-RuO ₂	403.0

Table S3 Overpotential values collected from various Bi_xRu_{1-x}O₂ electrode at 10 mA cm⁻².

Table S4 Comparison of C_{dl} values and the relative ratio to demonstrate the ECSA changes of

various electrocatalysts.					
Catalysts	$C_{dl} / [mF cm^{-2})]$	C_{dl}/C_s			
Bi _{0.03} Ru _{0.97} O ₂	62.98	1.05			
Bi _{0.05} Ru _{0.95} O ₂	163.94	2.73			
${\rm Bi}_{0.10}{\rm Ru}_{0.90}{\rm O}_2$	222.71	3.71			
$Sb_{0.04}Ru_{0.96}O_2$	186.74	3.11			
C-RuO ₂	5.33	0.09			
HM-RuO ₂	132.60	2.21			

Catalyst	Tafel slope /	Overpotential /	Reference
	(mV dec ⁻¹)	(mV)	
Bi _{0.05} Ru _{0.95} O ₂	52.90	203.5	This work
HM-RuO ₂	71.64	227.8	This work
	58	267	J Am Chem Soc, 2024, 146 , 15740-
Ku _{0.6} Cr _{0.2} 110.2O ₂			15750 ⁴
Der In O	71.3	204	Advanced Energy Materials, 2021,
$Ru_1Ir_1O_x$			11, 2102883 ⁵
Ru-UiO-bpydc	78.3	200	Chem, 2023, 9 , 1882-1896 ⁶
(Ru, Mn) ₂ O ₃	68.7	168	Nano Energy, 2023, 115 , 108727 ⁷
CA 7 Dec	56	210	Journal of Energy Chemistry, 2024,
SA Zn-KuO ₂			88 , 94-102 ⁸
	72	186	Energy & Environmental Science,
Ku ₂ (S ₃ Se)			2024, 17 , 1885-1893 ⁹
CoO _x /RuO _x -CC	61.2	180	<i>Small</i> , 2023, 19 , e2302238 ¹⁰
OD DateO	80	230	J Am Chem Soc, 2021, 143 , 18001-
9K-BairO3			1800911

Table S5 The comparison of Tafel slope, overpotential and durability test performance of Bi_{0.05}Ru_{0.95}O₂ and HM-RuO₂ with recently reported electrocatalysts in 0.5 M H₂SO₄.

	current		decay	
	density	operation	rate	
catalyst	/ (mA	time / h	/ (mV	reference
	cm ⁻²)		h ⁻¹)	
Bi _{0.05} Ru _{0.95} O ₂	100	>300	0.44	This work
Sb _{0.04} Ru _{0.96} O ₂	100	250	0.92	This work
Ru _{0.6} Cr _{0.2} Ti _{0.2} O ₂	100	200	0.025	J Am Chem Soc, 2024, 146 , 15740- 15750 ⁴
Ru _l Ir _l O _x	100	110	0.236	Advanced Energy Materials, 2021, 11, 2102883 ⁵
Ru-UiO-bpydc	50	140	0.894	Chem, 2023, 9 , 1882-1896 ⁶
$(Ru, Mn)_2O_3$	10	40	5.06	Nano Energy, 2023, 115 , 108727 ⁷
SA Zn-RuO ₂	10	43	4.32	Journal of Energy Chemistry, 2024, 88 , 94-102 ⁸
Ru ₂ (S ₃ Se)	10	50	Stable	Energy & Environmental Science, 2024, 17 , 1885-1893 ⁹
CoO _x /RuO _x -CC	10	60	0.786	Small, 2023, 19 , e2302238 ¹⁰
9R-BaIrO3	10	48	1.04	J Am Chem Soc, 2021, 143 , 18001- 18009 ¹¹
SnRuO _x	100	250	0.107	Nat Commun, 2023, 14 , 843 ¹²
3R-IrO ₂	100	42	0.396	<i>Joule</i> , 2021, 5 , 3221-3234 ¹³
Ir-MoO ₃	100	48	1.496	Nat Commun, 2021, 12, 5676 ¹⁴
V-Ru _x Mn ₁₋ xO_2 NWs	50	101	0.6	<i>Journal of Materials Chemistry A</i> , 2023, 11 , 25252-25261 ¹⁵
Sm ₃ IrO ₇	10	10	24.02	ACS Applied Materials & Interfaces, 2023, 15 , 14282-14290 ¹⁶
MD-RuO ₂ -BN	10	24	1.2	<i>Nat Commun</i> , 2024, 15 , 3928 ¹⁷
RuIr-NC	10	40	1.759	<i>Nat Commun</i> , 2021, 12 , 1145 ¹⁸

Table S6 The comparison of durability test performance of $Bi_{0.05}Ru_{0.95}O_2$ and $Sb_{0.04}Ru_{0.96}O_2$ with recently reported electrocatalysts in 0.5 M H₂SO₄.

Nd _{0.1} RuO _x /CC	10	25	0.6	<i>Advanced Functional Materials</i> , 2023, 33 , DOI: 10.1002/adfm.202213304 ¹⁹
Y ₂ MnRuO ₇	10	40	0.3	<i>Nat Commun</i> , 2023, 14 , 2010 ²⁰
Li _{0.52} RuO ₂	10	70	1.694	<i>Nat Commun</i> , 2022, 13 , 3784 ²¹
RuCoO _x	10	100	0.45	J Am Chem Soc, 2023, 145 , 17995- 18006 ²²
Mn-RuO ₂ -450	10	150	0.267	<i>Small</i> , 2024, 20 , e2400754 ²³
RuO _{2-x} /RuSe ₂	10	200	Stable	Advanced Functional Materials, 2024, DOI: 10.1002/adfm.202406587 ²⁴
12Ru/MnO ₂	10	200	0.815	<i>Nature Catalysis</i> , 2021, 4 , 1012- 1023 ²⁵
PtCo-RuO ₂ /C	10	20	4.47	Energy & Environmental Science, 2022, 15 , 1119-1130 ²⁶
Ag ₁ /IrO _x	10	50	0.52	ACS Energy Letters, 2021, DOI: 10.1021/acsenergylett.1c00283, 1588-1595 ²⁷
Ni-RuO ₂	10	8	10.4	Nat Mater, 2023, 22 , 100-108 ²⁸
Ir _{0.06} Co _{2.94} O ₄	10	200	0.424	J Am Chem Soc, 2021, 143 , 5201- 5211 ²⁹

Sample	Element	Atomic ratio [%]
Sb _{0.04} Ru _{0.96} O ₂	Sb	4.14
	Ru	95.86

Table S7 The atomic ratio of Ru and Sb collected from EDS analysis of $Sb_{0.04}Ru_{0.96}O_2$ sample.

Table S8 Relative Gibbs free energy of intermediates for AEM and LOM of $Bi_2Ru_{34}O_{72}$, Bi-

Ov-RuO2 and RuO2.					
		AEM			
Model Intermediates RuO ₂ Bi ₂ Ru ₃₄ O ₇₂ Bi-O _v -RuO ₂					
Slab	0	0	0		
*OH	1.35	0.88	0.66		
*O	2.21	2.42	2.21		
*OOH	4.23	4.05	3.63		
Slab+O ₂	4.92	4.92	4.92		

$-R_{11}O_{2}$	and	$R_{11}O_2$	
N_V -RuO ₂	anu	$\mathbf{R}\mathbf{u}\mathbf{O}_{2}$.	

LOM					
Model Intermediates	RuO ₂	Bi ₂ Ru ₃₄ O ₇₂	Bi-O _v -RuO ₂		
Slab	0	0	0		
*OH	1.35	0.88	0.66		
*0	2.21	2.42	2.21		
*H	5.66	5.28	4.69		
Slab+O ₂	4.92	4.92	4.92		

References

- 1. J. Rossmeisl, A. Logadottir and J. K. Nørskov, *Chemical Physics*, 2005, **319**, 178-184.
- I. C. Man, H. Y. Su, F. Calle Vallejo, H. A. Hansen, J. I. Martínez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo, J. K. Nørskov and J. Rossmeisl, *ChemCatChem*, 2011, 3, 1159-1165.
- S. Liu, Y. Chang, N. He, S. Zhu, L. Wang and X. Liu, ACS Appl Mater Interfaces, 2023, 15, 20563-20570.
- J. Abed, J. Heras-Domingo, R. Y. Sanspeur, M. Luo, W. Alnoush, D. M. Meira, H. Wang, J. Wang, J. Zhou, D. Zhou, K. Fatih, J. R. Kitchin, D. Higgins, Z. W. Ulissi and E. H. Sargent, J Am Chem Soc, 2024, 146, 15740-15750.
- 5. J. He, X. Zhou, P. Xu and J. Sun, Advanced Energy Materials, 2021, 11, 2102883.
- 6. N. Yao, H. Jia, J. Zhu, Z. Shi, H. Cong, J. Ge and W. Luo, *Chem*, 2023, 9, 1882-1896.
- Y. Qin, B. Cao, X.-Y. Zhou, Z. Xiao, H. Zhou, Z. Zhao, Y. Weng, J. Lv, Y. Liu, Y.-B. He, F. Kang, K. Li and T.-Y. Zhang, *Nano Energy*, 2023, 115, 108727.
- 8. Q. Qin, T. Wang, Z. Li, G. Zhang, H. Jang, L. Hou, Y. Wang, M. Gyu Kim, S. Liu and X. Liu, *Journal of Energy Chemistry*, 2024, **88**, 94-102.
- 9. D. Chen, H. Zhao, R. Yu, K. Yu, J. Zhu, J. Jiao, X. Mu, J. Yu, J. Wu and S. Mu, *Energy & Environmental Science*, 2024, **17**, 1885-1893.
- L. Deng, S. Liu, D. Liu, Y. M. Chang, L. Li, C. Li, Y. Sun, F. Hu, H. Y. Chen, H. Pan and S. Peng, *Small*, 2023, 19, e2302238.
- N. Li, L. Cai, C. Wang, Y. Lin, J. Huang, H. Sheng, H. Pan, W. Zhang, Q. Ji, H. Duan, W. Hu, W. Zhang, F. Hu, H. Tan, Z. Sun, B. Song, S. Jin and W. Yan, *J Am Chem Soc*, 2021, 143, 18001-18009.
- Z. Shi, J. Li, Y. Wang, S. Liu, J. Zhu, J. Yang, X. Wang, J. Ni, Z. Jiang, L. Zhang, Y. Wang, C. Liu, W. Xing and J. Ge, *Nat Commun*, 2023, 14, 843.
- Z. Fan, Y. Ji, Q. Shao, S. Geng, W. Zhu, Y. Liu, F. Liao, Z. Hu, Y.-C. Chang, C.-W. Pao, Y. Li, Z. Kang and M. Shao, *Joule*, 2021, 5, 3221-3234.
- X. Liu, S. Xi, H. Kim, A. Kumar, J. Lee, J. Wang, N. Q. Tran, T. Yang, X. Shao, M. Liang, M. G. Kim and H. Lee, *Nat Commun*, 2021, 12, 5676.
- H. Zhu, Y. Wang, Z. Jiang, B. Deng and Z.-J. Jiang, *Journal of Materials Chemistry A*, 2023, 11, 25252-25261.
- Y. Wang, Z. Li, L. Hou, Y. Wang, L. Zhang, T. Wang, H. Liu, S. Liu, Q. Qin and X. Liu, ACS Applied Materials & Interfaces, 2023, 15, 14282-14290.

- 17. D. Chen, R. Yu, K. Yu, R. Lu, H. Zhao, J. Jiao, Y. Yao, J. Zhu, J. Wu and S. Mu, *Nat Commun*, 2024, **15**, 3928.
- D. Wu, K. Kusada, S. Yoshioka, T. Yamamoto, T. Toriyama, S. Matsumura, Y. Chen, O. Seo, J. Kim, C. Song, S. Hiroi, O. Sakata, T. Ina, S. Kawaguchi, Y. Kubota, H. Kobayashi and H. Kitagawa, *Nat Commun*, 2021, 12, 1145.
- L. Li, G. Zhang, J. Xu, H. He, B. Wang, Z. Yang and S. Yang, *Advanced Functional Materials*, 2023, 33.
- D. Galyamin, J. Torrero, I. Rodriguez, M. J. Kolb, P. Ferrer, L. Pascual, M. A. Salam, D. Gianolio, V. Celorrio, M. Mokhtar, D. Garcia Sanchez, A. S. Gago, K. A. Friedrich, M. A. Pena, J. A. Alonso, F. Calle-Vallejo, M. Retuerto and S. Rojas, *Nat Commun*, 2023, 14, 2010.
- Y. Qin, T. Yu, S. Deng, X. Y. Zhou, D. Lin, Q. Zhang, Z. Jin, D. Zhang, Y. B. He, H. J. Qiu, L. He, F. Kang, K. Li and T. Y. Zhang, *Nat Commun*, 2022, 13, 3784.
- W. Zhu, F. Yao, K. Cheng, M. Zhao, C. J. Yang, C. L. Dong, Q. Hong, Q. Jiang, Z. Wang and H. Liang, *J Am Chem Soc*, 2023, 145, 17995-18006.
- 23. M. Xiao, J. Liu, R. Li, Y. Sun, F. Liu, J. Gan and S. Gao, Small, 2024, 20, e2400754.
- Y. Chen, Y. Liu, L. Li, T. Sakthive, Z. Guo and Z. Dai, *Advanced Functional Materials*, 2024, DOI: 10.1002/adfm.202406587.
- C. Lin, J.-L. Li, X. Li, S. Yang, W. Luo, Y. Zhang, S.-H. Kim, D.-H. Kim, S. S. Shinde, Y.-F. Li, Z.-P. Liu, Z. Jiang and J.-H. Lee, *Nature Catalysis*, 2021, 4, 1012-1023.
- H. Jin, S. Choi, G. J. Bang, T. Kwon, H. S. Kim, S. J. Lee, Y. Hong, D. W. Lee, H. S. Park, H. Baik, Y. Jung, S. J. Yoo and K. Lee, *Energy & Environmental Science*, 2022, 15, 1119-1130.
- F.-F. Zhang, C.-Q. Cheng, J.-Q. Wang, L. Shang, Y. Feng, Y. Zhang, J. Mao, Q.-J. Guo, Y.-M. Xie, C.-K. Dong, Y.-H. Cheng, H. Liu and X.-W. Du, *ACS Energy Letters*, 2021, DOI: 10.1021/acsenergylett.1c00283, 1588-1595.
- Z. Y. Wu, F. Y. Chen, B. Li, S. W. Yu, Y. Z. Finfrock, D. M. Meira, Q. Q. Yan, P. Zhu, M. X. Chen, T. W. Song, Z. Yin, H. W. Liang, S. Zhang, G. Wang and H. Wang, *Nat Mater*, 2023, 22, 100-108.
- J. Shan, C. Ye, S. Chen, T. Sun, Y. Jiao, L. Liu, C. Zhu, L. Song, Y. Han, M. Jaroniec, Y. Zhu,
 Y. Zheng and S. Z. Qiao, *J Am Chem Soc*, 2021, 143, 5201-5211.