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FIG. S1: Cross-sectional SEM images of filaments below AgNCs on p-Si/20 nm TiO2 after 
electroforming. (a) and (b) show representative cross-sectional SEM images at the locations of 
AgNC after FIB milling (stage tilt-angle 36°) with white dashed lines indicating the remaining 
AgNC top facets. White arrows 1, 2, and 3 indicate conductive material agglomeration below 
AgNC edges. These round bright features are assigned to contracted Ag CFs, characteristic of 
threshold switching behavior.

FIG. S2: (a) First three DC-IV sweeps of a single AgNC on 5 nm Al2O3 revealing non-volatile 
bipolar memristive switching. (b) Typical current map at the previous position of a AgNC on 5 
nm Al2O3, after electroforming and delamination, revealing a single dense current spot, with no 
clear fine-structure observed.

2



FIG. S3: Finite element simulations (Comsol Multiphysics) of the electric field distribution (a) 
at the AgNC/TiO2-interface, (b) the TiO2/Si-interface, (c) the AgNC/Al2O3-interface, and (d) 
the Al2O3/Si-interface. An electrical potential of 10 V was applied to the Si, whereas the AgNC 
was fixed at zero (ground) potential. As apparent from the color scales, inhomogeneity of the 
electric field inside the oxide arising from the AgNC geometry is more pronounced in the case 
of TiO2. Parameters of the simulation: oxide thickness = 20 nm, TiO2 = 80, [1] Al2O3 = 11. [2] 
We note that, high dielectric permittivity values for TiO2, have been reported over a wide range, 
depending on substrate, deposition method and crystal structure. We here selected one mid-
value within this range, for illustrating the qualitative difference originating from the disparate 
dielectric constants of both oxides.
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