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Preparation of the samples
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Figure S1. Schematic of the preparation technique of the samples
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Figure S2. (a) Photograph of a Si substrate without flakes and a Si substrate with MoS; flakes
transferred. (b) Coverage percentage after each transfer calculated by the analysis of several
optical microscopy images. (c) Same region of the sample after one transfer and after three
transfers. The area marked in orange corresponds with the one shown in Figure 1c.
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Morphological characterization of MoS: and graphite flakes
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Figure S3. MoS; (a) SEM and (b) OM |mages (shown in Figures 1c and 1d), and their
corresponding image analysis to determine the coverage of the flakes using Gwyddion
software. In the same region, 60+5 % of coverage is obtained by the analysis of OM image
and 701 5 % for the SEM one.
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Figure S5. (a) AFM image of 45x45um?. (b) Height profile in the regions marked with squares
and letters in (a).



XPS for MoS;
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Figure S6. XPS survey spectra for two MoS; samples with a different coverage obtained by
optical microscopy (Com). Peaks are identified as labelled in the figure.
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Figure S7. (a) Mo 3d and S 2s and (b) S 2p core levels of the MoS, sample with a Com =(17 5)
% coverage. Experimental data indicated with dots, total fit in red, and Shirley background

with a dashed grey line. The individual peaks are coloured and their corresponding core-levels
are indicated in the figure.

Binding FWHM

Core-level ~ Component core-level Energy (eV) (eV) G-L ratio
3d 32 233.0 1.2 0.2
Mo 3d
3dsp 229.8 1.1 0.3
(2]
< $2s 227.1 1.9 0.1
G=
& 2p 12 163.8 1.0 0.4
[e] S2p
= 2p 3 162.6 1.1 0.4
2p 12 100.3 0.9 0.7
Si 2p 2p 3p 99.7 1.0 0.3
SiO; 104.0 1.8 0.1

Table S1. Fitting parameters for the MoS; flakes sample. Position (BE), full width at half
maximum (FWHM), and Gaussian-Lorentzian (G-L) ratio.



Discussion about the coverage obtained by the analysis of the survey and
background selection.

The analysis of the background in the XPS survey scans provides valuable insights into the
guantitative analysis of XPS from nanostructures on surfaces, a factor often overlooked. In our
case, the sample geometry is well-known, consisting of island of the 2D material under
investigation, with micrometric lateral sizes and thicknesses ranging from 20 to 200 nm. These
islands partially cover the Si substrate, which has a native oxide layer on top (oxide thickness <
2nm as estimated by optical reflectance) (see Figure 1 in the main text). The geometry is
schematically illustrated in Figure S8.

The largest electron mean free path (A) possible in our experiment is 2 nm, with most of the
signal having A of 1 nm or less 2. Therefore, for thin films thicker than 5-10 nm (corresponding
to 5A), we do not expect any contribution from inelastically scattered electrons photoemitted by
the substrate in the regions covered by the islands.

Visual inspection of the MoS; and Gr XPS survey spectra (see Figure S9 a,b) reveals differences
in the background below the Mo, S, C and Si peaks, which is due to the different depth
distributions of the atoms. As discussed in references 3 and #, and using the peak shape
nomenclature discussed in those references, the following conclusions can be drawn: Mo and S
peaks, as well as the C peak, are “type a” peaks (see Figures S9c,d), meaning that photoelectrons
emitted from these atoms are not attenuated by any overlying layer of different material, as
evidenced by negatively sloped background decreasing for binding energies larger than the Mo,
S and C elastic peaks. In contrast, Si atoms are attenuated by the native oxide layer on top
(Figures S9c,d), showing only a flat background.

These attenuation effects, evident in the background, must be considered when fitting to
calculate peak areas to obtain coverage. Figure S9a and b show the survey spectra for MoS; and
Gr, with the background for some significant core-levels as indicated as in the legend. For all of
them a Shirley plus a slope-background (defined by Herrera-Gomez in reference °), has been
applied. In the case of Mo, S and C core-levels, a negative slope is required to accurately fit the
experimental inelastic tail.

By subtracting that background to each peak, the area of each peak has been obtained, which
has permitted us to estimate the coverage by applying the following equations (equations 1 and
2) where the area of each core level is defined as the area of the peak divided by the

corresponding cross section 6 (Acore tever = —P;ak Area
core levl
C (MOS ) _ AMOSz _ AMO3d + AMO3P + ASZp + ASZS (1)
XPS 2) — =
Arorar  Asizs t Asizp + Ao1s + Amoza + Amosp + Aszp + Asas
AGT ACIS
Cxps(GT) = 2)

Arorar  Asizs T Asizp + Ao1s + Acis



a)  Substrate coverage = 22% Figure S8. Schematic model of the sample

geometry in top (a) and lateral view (b). c)
Equivalent geometry taking into account the
Y substrate coverage with 2D flakes (22%) and
E the photoelectrons penetration depth.
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Figure S9. Survey spectra for MoS; (a) and graphite (b) flakes, deposited on a Si substrate
with a native oxide on top. The corresponding backgrounds as indicated in the figure have
been calculated by using the sum of a Shirley and a slope-background. Panels (c) and (d) shows
the schematic of the equivalent geometry for each case.



Morphological characterization for WSe;

Figure $10. Two opticl microscopy images recorded in twodifferent regions of sample

WSEz.
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Figure S11. (a) C 1s core level for the graphite flakes and a highly oriented pyrolytic graphite
(HOPG) sample recorded in the same system. (b) Residual difference signal between the C 1s
spectra of the Gr-flakes and the HOPG.



XPS fitting parameters for Gr and WSex-flakes

Core-level Component core-level Enii:gi/ir;g V) F‘;Zﬁ;w G-L ratio
o
é sp? 284.8 1.0 0.7
1G] Cils c-0 285.9 1.8 0.9
n-plasmon 291.3 2 0.1

Table S2. Fitting parameters for the Gr flakes sample. Position (BE), full width at half maximum
(FWHM), and Gauss-Lorentz (G-L) ratio.

Core-level Component core-level Binding FWHM G-L ratio

- Energy (eV) (eV)
e 4f 472 32.6 0.9 0.5
= W 4f
N af 5, 34.7 1.0 0.4
v
= 3d s, 54.8 1.0 0.6

Se 3d

3d 32 55.7 0.9 0.4

Table S3. Fitting parameters for the WeS, flakes sample. Position (BE), full width at half
maximum (FWHM), and Gauss-Lorentz (G-L) ratio.
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Figure S12. Fe 2p, P 2p, and S 2p core levels for the FePS; flakes transferred in air, in the inert
atmosphere of N,, and that last sample after 7 and 20 days stored in air. (*!) Peaks associated
with pure iron ¢, (*2) peaks due to iron oxide 2, (*3) peaks of sulfates/ sulfur oxide **!, and
(**) peaks due to phosphorous oxide 274,



FePSs flakes

Binding FWHM

Core-level Component core-level Energy (eV) (eV) G-L ratio
Fe* 2p 35 709.2 2.3 0.05
Fe2* 2p 1 722.7 2 0.8
Fe3* 2p 3 710.9 2.5 0.05
Fe2p
Fe* 2p 112 723.7 2.3 1.0
Sat1l 714.7 4.2 0.05
Sat2 730.8 5 0.5
2p 3/2 162.4 1.2 0.4
S2p 2p 1/2 163.5 1.3 0.05
sulfates 168.5 33 0.05
2p3p 131.8 1.1 0.8
P2p
2p 112 132.7 1.3 0.05

Table S4. Fitting parameters for the FePS; flakes sample. Position (BE), full width at half
maximum (FWHM), and Gauss-Lorentz (G-L) ratio.
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