Supporting Information

In situ fabrication of self-filtered near-infrared $Ti_3C_2T_x/n$ -Si Schottky-barrier photodiodes for continuous non-invasive photoplethysmographic system

Chen Wang,^a Yu Xia,^a Wenli Duan,^a Yongqiang Yu,^a* Qingyan Yang,^b* Jianyong Jie,^c Xiujuan Zhang^d and Jiansheng Jie^d*

^aC. Wang, Y. Xia, W. L. Duan, Prof. Y. Q. Yu

School of Microelectronics

Micro Electromechanical System Research Center of Engineering and Technology of Anhui Province

Hefei University of Technology,

Hefei, Anhui 230009, P. R. China

E-mail: yongqiangyu@hfut.edu.cn

^bQ. Y. Yang

Department of general practice

The First Affiliated Hospital of USTC

Hefei 230001, P. R. China

E-mail: qyyang17@163.com

^cJ. Y. Jie

Chinese medicine hospital of Nanfeng County

Nanfeng, Jiangxi 344500, P. R. China

^dProf. X. J. Zhang, Prof. J. S. Jie

Institute of Functional Nano & Soft Materials (FUNSOM)

Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices

Soochow University

Suzhou, Jiangsu 215123, P. R. China

E-mail: jsjie@suda.edu.cn

Figure S1. XRD pattern of the as-synthesized Ti₃AlC₂ film.

Figure S2. The height profile of the $Ti_3C_2T_x$ film on the Si substrate.

ARTICLE

Figure S3. SEM image of the as-synthesized $Ti_3C_2T_x$ film.

Figure S4. AFM images of the as-synthesized $Ti_3C_2T_x$ film.

Journal Name

Figure S5. The reverse bias $1/C^2$ -V characteristics of the Ti₃C₂T_x/n-Si Schottky-barrier photodiode.

From the 1/C²-V curve (Fig. S5), the built-in potential (ψ_{Bi}) on the semiconductor side can be calculated to be 0.78 eV. Moreover, the Φ_B of the device could be then calculated to be 1.02 eV based on the equation: $\Phi_B = q\psi_{Bi} + q\Phi_n + \frac{k_0T}{q}$, where Φ_n is the value of potential difference between conduction band (Ec) and Fermi level

 $(^{E_{F}})$ of semiconductor.

Figure S6. Time response of the device under 980 nm light illumination with 40 cycles.

Figure S7. The wavelength-dependent responsivity curve of the commercial Si-based photodiode (Thorlabs

FDS025).

Figure S8. The absorption coefficient (α) curve of silicon.

Figure S9. Simulated photogenerated rate distribution of the $Ti_3C_2T_x/n$ -Si Schottky-barrier photodiode for different

wavelengths of light.

Figure S10. PPG signals with indication for systolic maxima (squares) and minima (circles).

Journal Name

Figure S11. The Est. SBP and Est. DBP.