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1 Dataset

The feature information corresponding to each column in the raw data is shown in

Table S1.

Table S1 The Feature Information Contained in the Original Data

Columns Feature Description
composition Chemical formula
crystallinity Either single crystal, polycrystalline, or nanoparticles
synthesis Brief string describing the synthesis method
spacegroup Spacegroup number, if available

rho (ohm.cm)

S [muV/K]
PF [W/mK"2]

zT
kappa [W/mK]

sigma [S/cm]
T[K]

N(Y

Electrical resistivity, in ohm.cm

Seebeck coefficient, in microVolts/K, if available

Thermoelectric power factor,Sigma * S 2,
in[W/mK?] if available
Thermoelectric figure of merit,PF * T/K , if available
Thermal conductivity in W/m K if available
Electrical conductivity, in S/cm if available

Temperature in Kelvin at which these properties were
obtained, if available

Original source of the recording.




To ensure the accuracy of preprocessing, statistical analysis was performed on the raw

data, with specific results presented in Table S2 below:

Table S2 Statistical Analysis of Initial Data

Space- rho S PF /T kappa sigma T (K]
group (ohm.cm) [muV/K] [W/mK*2] [W/mK] [S/cm]

Counts  1080.000  1093.000  1093.000 1093.000 714.000  714.000  1093.000  1082.000
é;f; 8¢ 148.763 22.800 -40.020  7.010E-04 0208  4.190 1674.019  576.525
Standard

neard 27 491 450286  193.103  1.061E-03 0328  4.864 10533.184  264.424
deviation
Min 2.000 0.000 2752200 1.766E-10 0.000  0.200 0.000 300.000
25% 62.000 0.002 -163.530  6.089E-05 0017  1.752 50.000 300.000
50% 186.000 0.005 467.600  2.154E-04 0.075  2.809 223.040 400.000
75% 220.000 0.023 100.000  8.497E-04 0238 5243 704.350 700.000
Max 227.000 14500.000 1235430  6.728E-03 2272 48700  173720.000  1000.000




Table S3 Statistical Analysis After Data Preprocessing

kappa sigma

spacegroup S [muV/K] zT [W/mK] [S/cm] T [K]

Counts 656.000 656.000  656.000  656.000  656.000  656.000
A:,]g :ege 159.864 -41.560 0.221 4059 587232  562.957
33‘1‘::1‘;2 74.038 172.739 0.336 4852 730915  260.094
Min 2.000 -460.992 0.000 0.200 0.035  300.000
25% 64.000 -168.160 0.083 1.702 108.115  300.000
50% 204.000 -78.750 0.075 2681  359.960  400.000
75% 221.000 104.250 0.251 4970  799.235  700.000

Max 227.000 411.800 2.272 48.700 8196.700 1000.000




The HOMO character, HOMO element, LUMO_ character and LUMO element
features generated by AtomicOrbitals characterization tool describe four groups of

molecular orbital information, which are not included in the training matrix

Table S4 Descriptor Information Generated by Characterization

Number of feature

Name generation Function Description
ElementProperty! 132 Elemental Property Descriptors
Meredig? 120 Thermodynamic Component Descriptors
BandCenter? 1 Calculation of Band Center Using
Electronegativity
Stoichiometry! 6 Calculation Standards for Stoichiometric

Feature Properties

AtomicPackingEfficiency Packing Efficiency Based on Amorphous
4 5 .
Filler Geometry Theory
AtomicOrbitals’ 7 Highest Qccupled State/Lowest
Unoccupied State
TMetalFraction® 1 Proportion of Magnetic Transition

Metals in Components




2 Feature importance

Among the three models selected for importance analysis, we employed different
methods. For the Ridge model, we prevent overfitting by adding an L2 regularization term
to the loss function. We calculate feature importance using the weight coefficients of the
linear model. In contrast, the GBDT model, as an ensemble learning method, builds a
strong predictive model by combining multiple decision trees. For GBDT, we analyze
feature importance using the tree model approach. The XGBoost model, on the other hand,
utilizes SHAP values for feature importance analysis.

Following the described importance calculation methods, we conducted 100 rounds of
cross-validation training. We collected normalized feature importance scores from each
round, multiplied them by the R? scores, and summed them up as weighted cumulative

feature importance. This result serves as the final ranking for each model.

3 models, Xi Features,
100 rounds of random split fitting

‘ Normalization of feature J

importance
Ridge GBDT XGBoost
feature importance Xi x R? score feature importance Xi x R? score feature importance Xi x R? score

Ranking,
‘Weight accumulation

‘ Final feature importance
ranking

Figure S1 Feature importance-based feature selection.



We calculated the average performance evaluation indicators (R?, RMSE, MAE) of
each model in the 100 times CV process, and scored the overall performance of each model

in the following way to allocate their own weight index for each model.

R2

score; = 9 #(1)
RMSE,,, + MAE

Table S5 The proportion of weights in the calculation results of each model during
100 rounds of training for 1g(zT)

Rounds/100 Avg R? Avg RMSE  Avg MAE Score Weight

Ridge 0.739 0.969 0.620 0.465 17.26%

Gradient 0.922 0.531 0.316 1.089 40.38%
Boost

XGBoost 0.928 0.510 0.302 1.142 42.36%
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Figure S2 The distribution of the top ten important features under three importance

calculation methods for a single feature.



3 Machine-Learning models and performances

Table S6 ML model parameters used by 11 regressors.

Regressor Dependent package name Parameters

Linear sklearn.linear model.

. . — . Nan

Regression LinearRegression

Ridge sklearn.linear model. Ridge  alpha=55, solver='Isqr', max_iter=20000

Lasso sklearn.linear model.Lasso alpha=0.003 , max_iter=20000 ,

. sklearn.linear model.Elasti . .

ElasticNet - alpha=0.015, I1_ratio=0.2,max_iter=20000

Decision Tree

Random Forest

AdaBoost

Gradient Boost

XGBoost

K-nearest
neighbor

MLP

cNet

sklearn.tree.
DecisionTreeRegressor

sklearn.ensemble.RandomF
orestRegressor

sklearn.ensemble.AdaBoost
Regressor

sklearn.ensemble.Gradient
BoostingRegressor

xgboost.sklearn.XGBRegre
ssor

sklearn.neighbors.KNeighb
orsRegressor

sklearn.neural network.ML
PRegressor

max_depth=10 , max_features = 'auto’

max_depth=13 , max_features ='auto’,
n_estimators=50

learning_rate= 0.1, n_estimators= 100

learning_rate=0.15, max_depth=3,
max_features='auto’, n_estimators=1000

colsample bytree=0.8, learning_rate=0.1,
max_depth=3, n_estimators=500,
subsample=0.8

n_neighbors=3, weights='distance'

Activation="relu’, alpha=0.1,
hidden layer sizes=(100, 100),
learning_rate='constant’,
learning_rate init=0.01, max_iter=5000,
solver="lbfgs'

* The parameters of the above models were obtained by GridSearchCV method. Other

parameters not mentioned were used as default.
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Figure S3 True-Predict Scatter Plot using the [656 X 274] feature matrix with 10

regressors.
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Figure S4 True-Predict Scatter Plot using the [656 X 5] feature matrix with 10

regressors.
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The model performance differences in Table S7 are explained in detail. When the data
set has many features, the multicollinearity problem between the features is easy to occur,
and the standard Linear Regression method results in overfitting the model, with an R? of -
77.462, which is poor. Ridge and Lasso solve this problem by adding L2 regularization
terms and L1 regularization terms, respectively, so the performance is improved compared
to the Linear Regression model with an R? of 0.523 and 0.519, respectively. Ridge
regression, however, does not apply to feature selection; it considers all features. When
features are highly correlated, Lasso regression selects some features at random. Moreover,
it is difficult for them to choose regularization parameters, which can easily cause bad
effects on the model. ElasticNet regression combines the advantages of Ridge and Lasso as
well as their disadvantages, with an R? of 0.516.

For tree models, Decision Tree is easy to be disturbed by noisy data when data is
divided, and it is sensitive to feature scaling, and the selection of feature scale will affect
the structure of decision tree. Therefore, in the case of multiple features, the model
performance will be affected when dealing with complex data sets, and the R? is 0.741.
Random Tree makes the final prediction by integrating the prediction of multiple decision
trees. The data and features of each tree are selected randomly, which greatly reduces the
possibility of overfitting and improves the performance of the model with an R? of 0.823.
While Gradient Boosting optimizes the model by gradually fitting residuals, each iteration
of the model corrects the errors of the previous one, and can more accurately identify which
features contribute most to the improvement of the model, performing best in the tree
model with an R? of 0.891.

AdaBoost is particularly sensitive to noisy data and extreme values, and in each
iteration, AdaBoost increases the weight of samples with large errors. If these samples are

difficult to predict due to noise, the model will pay excessive attention to these samples,
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resulting in overfitting the noisy data and decreasing model performance, with an R? of
0.692. XGBoost directly optimizes loss functions, adds regularization terms, and builds
multiple complex decision trees capable of capturing nonlinear relationships in the data.
When dealing with large, complex or noisy data sets, XGBoost performs better, with an R?
of 0.887.

When making regression prediction, KNN takes K sample data from the training set
that is closest to the sample to be tested, and the average value of these K sample data is
considered to be the value of the sample to be tested. Because the data is sparse at the
boundary, the effect of K-nearest neighbor model on the boundary data is poor, and the R?
is 0.745.

MLP is often used in unstructured data and is more sensitive to the feature correlation
of structured data. Redundant or irrelevant features may affect the performance of the
model. Therefore, in the case of many features, the training process may be unstable and

prone to overfitting, with an R? of 0.788.

Table S7 Training Results of Preselected Models

R? RMSE MAE
Training 10-fold  Training 10-fold Training 10-fold

Reléir‘:;;ron 0.705 -77.462 0.182 1.303 0.132 0337
Ridge 0.641 0.523 0.201 0.225 0.139  0.158
Lasso 0.625 0.519 0.206 0.226 0.144 0.16

ElasticNet 0.621 0.516 0.207 0.227 0.144  0.159

Decision Tree 0.996 0.741 0.02 0.159 0.01 0.081
Random Forest 0.976 0.823 0.052 0.134 0.026  0.071

AdaBoost 0.814 0.692 0.145 0.179 0.11 0.121
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4 Feature selection algorithm

Backward Elimination: In this study, we employed a backward elimination approach
for preliminary feature selection. Backward elimination is a feature selection method and
an essential step in feature engineering. The basic principle of backward elimination starts
with a complete model containing all features. In each iteration, the least relevant feature is
removed from the model, and the remaining features are used for training. At each step, the
feature that results in the smallest performance drop upon removal is eliminated. This
process continues until removing any feature significantly degrades model performance,
leaving the most important features.

The main advantage of backward elimination is its consideration of interactions
between features. However, when dealing with many features, the computational cost of
backward elimination can become significant. Therefore, in this study, we improved the
backward elimination process by removing the least important feature from the feature set

based on the previously calculated feature importance ranking.
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features included

Figure S5 The flowchart of the backward deletion algorithm used in this study.

Forward Selection: The forward selection algorithm is employed in this study for
further feature selection. The goal is to narrow down the range of physically important
features that indirectly affect the zT value. The forward selection algorithm is a feature
selection method that starts with a zero-feature model and gradually adds one feature at a
time. After adding each feature, a model is constructed, and the most impactful feature in
terms of performance improvement is selected, thus determining the optimal feature
combination. This approach integrates feature selection and model training, allowing

simultaneous selection of the best feature subset and training of the optimal model.
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Figure S6 The flowchart of the Forward Selection algorithm used in this study.
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Table S8 The Forward Selection Process of Ig (zT)

Feature Names RMSE MAE R?
range Electronegativity 1.644 1.211 0.308
T K_ 1.192 0.744 0.637
l\ﬁgﬁﬁi ?\?I\?l\llr%l_biiv 0.821 0.484 0.830
MagpieData mode NValence 0.764 0.462 0.853
MagpieData minimum GSvolume pa 0.726 0.453 0.867
MagpieData mean GSvolume_pa 0.724 0.440 0.866
MagpieData mean NsUnfilled 0.718 0.441 0.868
Te fraction 0.705 0.435 0.873
MagpieData range Electronegativity 0.705 0.435 0.873
Mn fraction 0.711 0.441 0.871
MagpieData range NpUnfilled 0.712 0.442 0.870
spacegroup 0.706 0.434 0.874
mean Row 0.700 0.434 0.875
hg;i‘;f(l})r f,tﬁpnﬁf;‘ﬁ? 0.701 0.435 0.875
MagpieData mean Electronegativity 0.693 0.437 0.878
MagpieData mode AtomicWeight 0.703 0.439 0.874
MagpieData mean CovalentRadius 0.706 0.440 0.874
HOMO energy 0.729 0.443 0.865
MagpieData avg_dev NpValence 0.729 0.449 0.865
MagpieData maximum 0.736 0.445 0.862

GSvolume pa

MagpieData avg_dev GSbandgap 0.756 0.457 0.855
MagpieData minimum MeltingT 0.751 0.451 0.856
Mgfféfgiteagzg%i—t‘;ev 0.758 0.457 0.853
MagpieData avg_dev MeltingT 0.774 0.455 0.847
MagpieData maximum NUnfilled 0.791 0.454 0.838
MagpieData mean NpValence 0.794 0.468 0.838

* The above calculation results are retained with three significant digits.
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To further investigate the impact of primary features (Seebeck coefficient, electrical
conductivity, and thermal conductivity) on the properties of thermoelectric materials, this
study conducted a SHAP value analysis for each feature within an XGBoost model trained
across the full feature space (encompassing all training features, Figure S7). The features
were ranked according to their importance as perceived by the model, with the ranking
approximated by the average magnitude of the SHAP values in descending order, placing
higher importance on features closer to the top. The horizontal axis represents the
magnitude of the SHAP values for specific data points, consistent with the main text
analysis, where the sign of the SHAP value correlates positively or negatively with zT, and
a larger magnitude indicates a stronger correlation. The scatter points correspond to each

actual data point in the training data, with redder colors indicating higher zT values.
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Figure S7 SHAP value analysis of each sample point and feature by the XGBoost
model trained in the full feature space. The SHAP analysis in the full feature space
validates the accuracy of our model, confirming that, as described in the definition of
zT, the performance of thermoelectric materials is jointly determined by electrical
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conductivity, temperature, Seebeck coefficient, and thermal conductivity. It also
reveals that under the current data distribution, electrical conductivity has a more
significant impact on material performance relative to temperature, Seebeck
coefficient, and thermal conductivity.

a The Importance Ranking by Ridge for Ig(zT) b The Ranking by Gr for lg(zT)

range AtomicRadius

Data mode Electronegativity MagpicData maximum Electronegativity

MagpicData mode GSvolume_pa S_muV/K_
% spacegroup E kappa _W/mK_
g Onorm| £ MagpicData minimum CovalentRadius
= - frac p valence electrons

MagpieData minimum CovalentRadius
MagpicData minimum MendeleevNumber MagpieData mean NValence
MagpieData maximum NdValence MagpicData avg_dev NpValence
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Importance portance
C The Importance Ranking by XGBoost for lg(zT)
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Figure S8 Feature importance ranking for 1g(zT) by (a)Ridge, (b)GBDT, and
(¢)XGBoost models using SHAP method.
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