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1 Dataset

The feature information corresponding to each column in the raw data is shown in 

Table S1.

Table S1 The Feature Information Contained in the Original Data

Columns Feature Description

composition Chemical formula

crystallinity Either single crystal, polycrystalline, or nanoparticles

synthesis Brief string describing the synthesis method

spacegroup Spacegroup number, if available

rho (ohm.cm) Electrical resistivity, in ohm.cm

S [muV/K] Seebeck coefficient, in microVolts/K, if available

PF [W/mK^2]
Thermoelectric power factor, , 𝑠𝑖𝑔𝑚𝑎 ∗ 𝑆2

in  if available[𝑊/𝑚𝐾2]

zT Thermoelectric figure of merit, , if available𝑃𝐹 ∗ 𝑇/𝐾

kappa [W/mK] Thermal conductivity in  , if available𝑊/𝑚 ∗ 𝐾

sigma [S/cm] Electrical conductivity, in , if available𝑆/𝑐𝑚

T [K] Temperature in Kelvin at which these properties were 
obtained, if available

src Original source of the recording.
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To ensure the accuracy of preprocessing, statistical analysis was performed on the raw 

data, with specific results presented in Table S2 below:

Table S2 Statistical Analysis of Initial Data

Space-
group

rho 
(ohm.cm)

S 
[muV/K]

PF 
[W/mK^2] zT kappa 

[W/mK]
sigma 
[S/cm] T [K]

Counts 1080.000 1093.000 1093.000 1093.000 714.000 714.000 1093.000 1082.000 

Average 
value 148.763 22.800 -40.020 7.010E-04 0.208 4.190 1674.019 576.525 

Standard 
deviation 77.491 450.286 193.103 1.061E-03 0.328 4.864 10533.184 264.424 

Min 2.000 0.000 -752.200 1.766E-10 0.000 0.200 0.000 300.000 

25% 62.000 0.002 -163.530 6.089E-05 0.017 1.752 50.000 300.000 

50% 186.000 0.005 -67.600 2.154E-04 0.075 2.809 223.040 400.000 

75% 220.000 0.023 100.000 8.497E-04 0.238 5.243 704.350 700.000 

Max 227.000 14500.000 1235.430 6.728E-03 2.272 48.700 173720.000 1000.000 
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Table S3 Statistical Analysis After Data Preprocessing

spacegroup S [muV/K] zT kappa 
[W/mK]

sigma 
[S/cm] T [K]

Counts 656.000 656.000 656.000 656.000 656.000 656.000 

Average 
value 159.864 -41.560 0.221 4.059 587.232 562.957 

Standard 
deviation 74.038 172.739 0.336 4.852 730.915 260.094 

Min 2.000 -460.992 0.000 0.200 0.035 300.000 

25% 64.000 -168.160 0.083 1.702 108.115 300.000 

50% 204.000 -78.750 0.075 2.681 359.960 400.000 

75% 221.000 104.250 0.251 4.970 799.235 700.000 

Max 227.000 411.800 2.272 48.700 8196.700 1000.000 
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The HOMO_character, HOMO_element, LUMO_character and LUMO_element 

features generated by AtomicOrbitals characterization tool describe four groups of 

molecular orbital information, which are not included in the training matrix

Table S4 Descriptor Information Generated by Characterization

Name Number of feature 
generation Function Description

ElementProperty1 132 Elemental Property Descriptors

Meredig2 120 Thermodynamic Component Descriptors

BandCenter3 1 Calculation of Band Center Using 
Electronegativity

Stoichiometry1 6 Calculation Standards for Stoichiometric 
Feature Properties

AtomicPackingEfficiency
4 5 Packing Efficiency Based on Amorphous 

Filler Geometry Theory

AtomicOrbitals5 7 Highest Occupied State/Lowest 
Unoccupied State

TMetalFraction6 1 Proportion of Magnetic Transition 
Metals in Components
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2 Feature importance

Among the three models selected for importance analysis, we employed different 

methods. For the Ridge model, we prevent overfitting by adding an L2 regularization term 

to the loss function. We calculate feature importance using the weight coefficients of the 

linear model. In contrast, the GBDT model, as an ensemble learning method, builds a 

strong predictive model by combining multiple decision trees. For GBDT, we analyze 

feature importance using the tree model approach. The XGBoost model, on the other hand, 

utilizes SHAP values for feature importance analysis.

Following the described importance calculation methods, we conducted 100 rounds of 

cross-validation training. We collected normalized feature importance scores from each 

round, multiplied them by the R2 scores, and summed them up as weighted cumulative 

feature importance. This result serves as the final ranking for each model.

Figure S1 Feature importance-based feature selection.
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We calculated the average performance evaluation indicators (R2, RMSE, MAE) of 

each model in the 100 times CV process, and scored the overall performance of each model 

in the following way to allocate their own weight index for each model.

𝑠𝑐𝑜𝑟𝑒𝑖=
𝑅2𝑎𝑣𝑔

𝑅𝑀𝑆𝐸𝑎𝑣𝑔+𝑀𝐴𝐸𝑎𝑣𝑔
 #(1)

 𝑊𝑖=
𝑠𝑐𝑜𝑟𝑒𝑖
𝑁

∑
𝑖= 1

𝑠𝑐𝑜𝑟𝑒𝑖

#(2)

 
     

Table S5 The proportion of weights in the calculation results of each model during 
100 rounds of training for lg(zT)

Rounds/100 Avg R2 Avg RMSE Avg MAE Score Weight

Ridge 0.739 0.969 0.620 0.465 17.26%

Gradient 
Boost 0.922 0.531 0.316 1.089 40.38%

XGBoost 0.928 0.510 0.302 1.142 42.36%
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Figure S2 The distribution of the top ten important features under three importance 

calculation methods for a single feature.
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3 Machine-Learning models and performances

Table S6 ML model parameters used by 11 regressors.

Regressor Dependent package name Parameters

Linear 
Regression

sklearn.linear_model. 
LinearRegression Nan

Ridge sklearn.linear_model. Ridge alpha=55, solver='lsqr', max_iter=20000

Lasso sklearn.linear_model.Lasso alpha=0.003 , max_iter=20000 , 

ElasticNet
sklearn.linear_model.Elasti

cNet
alpha=0.015, l1_ratio=0.2,max_iter=20000

Decision Tree
sklearn.tree. 

DecisionTreeRegressor
max_depth=10 , max_features = 'auto'

Random Forest
sklearn.ensemble.RandomF

orestRegressor
max_depth=13 , max_features ='auto', 

n_estimators=50

AdaBoost
sklearn.ensemble.AdaBoost

Regressor
learning_rate= 0.1, n_estimators= 100

Gradient Boost
sklearn.ensemble.Gradient

BoostingRegressor
learning_rate=0.15, max_depth=3, 

max_features='auto', n_estimators=1000

XGBoost
xgboost.sklearn.XGBRegre

ssor

colsample_bytree=0.8, learning_rate=0.1, 
max_depth=3, n_estimators=500, 

subsample=0.8

K-nearest 
neighbor

sklearn.neighbors.KNeighb
orsRegressor

n_neighbors=3, weights='distance'

MLP
sklearn.neural_network.ML

PRegressor

Activation='relu', alpha=0.1, 
hidden_layer_sizes=(100, 100), 

learning_rate='constant', 
learning_rate_init=0.01, max_iter=5000, 

solver='lbfgs'

* The parameters of the above models were obtained by GridSearchCV method. Other 

parameters not mentioned were used as default.
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Figure S3 True-Predict Scatter Plot using the [656×274] feature matrix with 10 

regressors.
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Figure S4 True-Predict Scatter Plot using the [656×5] feature matrix with 10 

regressors.
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The model performance differences in Table S7 are explained in detail. When the data 

set has many features, the multicollinearity problem between the features is easy to occur, 

and the standard Linear Regression method results in overfitting the model, with an R² of -

77.462, which is poor. Ridge and Lasso solve this problem by adding L2 regularization 

terms and L1 regularization terms, respectively, so the performance is improved compared 

to the Linear Regression model with an R² of 0.523 and 0.519, respectively. Ridge 

regression, however, does not apply to feature selection; it considers all features. When 

features are highly correlated, Lasso regression selects some features at random. Moreover, 

it is difficult for them to choose regularization parameters, which can easily cause bad 

effects on the model. ElasticNet regression combines the advantages of Ridge and Lasso as 

well as their disadvantages, with an R² of 0.516.

For tree models, Decision Tree is easy to be disturbed by noisy data when data is 

divided, and it is sensitive to feature scaling, and the selection of feature scale will affect 

the structure of decision tree. Therefore, in the case of multiple features, the model 

performance will be affected when dealing with complex data sets, and the R² is 0.741. 

Random Tree makes the final prediction by integrating the prediction of multiple decision 

trees. The data and features of each tree are selected randomly, which greatly reduces the 

possibility of overfitting and improves the performance of the model with an R² of 0.823. 

While Gradient Boosting optimizes the model by gradually fitting residuals, each iteration 

of the model corrects the errors of the previous one, and can more accurately identify which 

features contribute most to the improvement of the model, performing best in the tree 

model with an R² of 0.891.

AdaBoost is particularly sensitive to noisy data and extreme values, and in each 

iteration, AdaBoost increases the weight of samples with large errors. If these samples are 

difficult to predict due to noise, the model will pay excessive attention to these samples, 
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resulting in overfitting the noisy data and decreasing model performance, with an R² of 

0.692. XGBoost directly optimizes loss functions, adds regularization terms, and builds 

multiple complex decision trees capable of capturing nonlinear relationships in the data. 

When dealing with large, complex or noisy data sets, XGBoost performs better, with an R² 

of 0.887.

When making regression prediction, KNN takes K sample data from the training set 

that is closest to the sample to be tested, and the average value of these K sample data is 

considered to be the value of the sample to be tested. Because the data is sparse at the 

boundary, the effect of K-nearest neighbor model on the boundary data is poor, and the R² 

is 0.745.

MLP is often used in unstructured data and is more sensitive to the feature correlation 

of structured data. Redundant or irrelevant features may affect the performance of the 

model. Therefore, in the case of many features, the training process may be unstable and 

prone to overfitting, with an R² of 0.788.

Table S7 Training Results of Preselected Models

R² RMSE MAE

Training 10-fold Training 10-fold Training 10-fold

Linear 
Regression 0.705 -77.462 0.182 1.303 0.132 0.337

Ridge 0.641 0.523 0.201 0.225 0.139 0.158

Lasso 0.625 0.519 0.206 0.226 0.144 0.16

ElasticNet 0.621 0.516 0.207 0.227 0.144 0.159

Decision Tree 0.996 0.741 0.02 0.159 0.01 0.081

Random Forest 0.976 0.823 0.052 0.134 0.026 0.071

AdaBoost 0.814 0.692 0.145 0.179 0.11 0.121
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Gradient Boost 1 0.891 0.002 0.106 0.001 0.057

XGBoost 0.998 0.887 0.017 0.108 0.012 0.058

K-nearest 
neighbor 1 0.745 0 0.164 0 0.085

MLP 0.998 0.788 0.015 0.109 0.006 0.047
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4 Feature selection algorithm

Backward Elimination: In this study, we employed a backward elimination approach 

for preliminary feature selection. Backward elimination is a feature selection method and 

an essential step in feature engineering. The basic principle of backward elimination starts 

with a complete model containing all features. In each iteration, the least relevant feature is 

removed from the model, and the remaining features are used for training. At each step, the 

feature that results in the smallest performance drop upon removal is eliminated. This 

process continues until removing any feature significantly degrades model performance, 

leaving the most important features.

The main advantage of backward elimination is its consideration of interactions 

between features. However, when dealing with many features, the computational cost of 

backward elimination can become significant. Therefore, in this study, we improved the 

backward elimination process by removing the least important feature from the feature set 

based on the previously calculated feature importance ranking.
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Figure S5 The flowchart of the backward deletion algorithm used in this study.

Forward Selection: The forward selection algorithm is employed in this study for 

further feature selection. The goal is to narrow down the range of physically important 

features that indirectly affect the zT value. The forward selection algorithm is a feature 

selection method that starts with a zero-feature model and gradually adds one feature at a 

time. After adding each feature, a model is constructed, and the most impactful feature in 

terms of performance improvement is selected, thus determining the optimal feature 

combination. This approach integrates feature selection and model training, allowing 

simultaneous selection of the best feature subset and training of the optimal model.
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Figure S6 The flowchart of the Forward Selection algorithm used in this study.
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Table S8 The Forward Selection Process of lg (zT)

Feature Names RMSE MAE R2

range Electronegativity 1.644 1.211 0.308 

T _K_ 1.192 0.744 0.637 

MagpieData avg_dev 
MendeleevNumber 0.821 0.484 0.830 

MagpieData mode NValence 0.764 0.462 0.853 

MagpieData minimum GSvolume_pa 0.726 0.453 0.867 

MagpieData mean GSvolume_pa 0.724 0.440 0.866 

MagpieData mean NsUnfilled 0.718 0.441 0.868 

Te fraction 0.705 0.435 0.873 

MagpieData range Electronegativity 0.705 0.435 0.873 

Mn fraction 0.711 0.441 0.871 

MagpieData range NpUnfilled 0.712 0.442 0.870 

spacegroup 0.706 0.434 0.874 

mean Row 0.700 0.434 0.875 

MagpieData minimum 
SpaceGroupNumber 0.701 0.435 0.875 

MagpieData mean Electronegativity 0.693 0.437 0.878 

MagpieData mode AtomicWeight 0.703 0.439 0.874 

MagpieData mean CovalentRadius 0.706 0.440 0.874 

HOMO_energy 0.729 0.443 0.865 

MagpieData avg_dev NpValence 0.729 0.449 0.865 

MagpieData maximum 
GSvolume_pa 0.736 0.445 0.862 

MagpieData avg_dev GSbandgap 0.756 0.457 0.855 

MagpieData minimum MeltingT 0.751 0.451 0.856 

MagpieData avg_dev 
Electronegativity 0.758 0.457 0.853 

MagpieData avg_dev MeltingT 0.774 0.455 0.847 

MagpieData maximum NUnfilled 0.791 0.454 0.838 

MagpieData mean NpValence 0.794 0.468 0.838 

* The above calculation results are retained with three significant digits.
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To further investigate the impact of primary features (Seebeck coefficient, electrical 

conductivity, and thermal conductivity) on the properties of thermoelectric materials, this 

study conducted a SHAP value analysis for each feature within an XGBoost model trained 

across the full feature space (encompassing all training features, Figure S7). The features 

were ranked according to their importance as perceived by the model, with the ranking 

approximated by the average magnitude of the SHAP values in descending order, placing 

higher importance on features closer to the top. The horizontal axis represents the 

magnitude of the SHAP values for specific data points, consistent with the main text 

analysis, where the sign of the SHAP value correlates positively or negatively with zT, and 

a larger magnitude indicates a stronger correlation. The scatter points correspond to each 

actual data point in the training data, with redder colors indicating higher zT values.
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Figure S7 SHAP value analysis of each sample point and feature by the XGBoost 
model trained in the full feature space. The SHAP analysis in the full feature space 
validates the accuracy of our model, confirming that, as described in the definition of 
zT, the performance of thermoelectric materials is jointly determined by electrical 
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conductivity, temperature, Seebeck coefficient, and thermal conductivity. It also 
reveals that under the current data distribution, electrical conductivity has a more 
significant impact on material performance relative to temperature, Seebeck 
coefficient, and thermal conductivity.

Figure S8 Feature importance ranking for lg(zT) by (a)Ridge, (b)GBDT, and 
(c)XGBoost models using SHAP method.
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