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Figure S1. The median I-V curves for three crossbar samples with different thicknesses of the 

active nanocomposite PPX-MoOx layer, specified in the graph. 
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Figure S2. 10 I-V cycles of the PPX-MoOx memristor, Icc = 0.5 mA. 

 

Figure S3. The I-V median curves of 2 different devices in the PPX-MoOx based crossbar array, 

Icc = 0.1 mA. 

  



Supplementary Note 1 

Stuck devices may occur in different situations: as a result of the set/reset operation (i.e., 

endurance failure [1]) or as an initial memristive fault (our case). Stuck-on failures may occur 

during the set process and are often linked to over-diffusion of the active electrode in the active 

layer [2]. In our case, stuck-off failures can be attributed to defects in the active layer or 

inaccuracy of the fabrication technology [3]. Latter is referred to as device yield or production 

yield problem in the literature. It is especially important for polymer-based memristors because 

of the structural inhomogeneity of most polymers, making a 90% production yield of polymer 

memristors a high one [4]. While we will strive to minimize such faults in our future work, 

endurance faults may still occur after a considerable number of resistive switching cycles, so the 

problem of stuck devices is of high importance.  
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Figure S4. The endurance of the PPX-MoOx memristor with decreased Uread.  



 

Figure S5. The retention of two different states, obtained in the volatile regime. 

 

Figure S6. The long-term retention of two different states. LRS was set at compliance current 

1 mA. 

 

 



 

Figure S7. An example of the voltage pulse sequence, representing the ‘101’ pattern. The fitted 

experimental parameters: Uhigh = 4 V, Uread = 1.4 V, Ulow = -100 mV, Urelax = -0.7 mV, tpulse = 25 

ms, tread = 25 ms, trelax = 400 ms. 

  



 

 

Figure S8. The distributions of the output currents for different patterns obtained with Icc = 0.05 

mA presented separately for 4 different PPX-MoOx memristors, each graph demonstrates solely 

the C2C variations. 

 

 

Figure S9. The distributions of the output currents for different patterns obtained with Icc = 0.1 

mA presented separately for 4 different PPX-MoOx memristors, each graph demonstrates solely 

the C2C variations. 



 

Figure S10. The distributions of the output currents for different patterns obtained with Icc = 0.1 

mA and Uread = 800 mV. 

 

 



 

Figure S11. The network weights a) full-precision in the software readout layers, b) discretized 

in the memristive readout layers.  



Supplementary Note 2 

First, we specify what we mean by on-chip and off-chip training. On-chip training implies that 

the training process is performed directly via memristive devices. During training, each weight 

update takes place in hardware, i.e., all memristive states are updated accordingly, classification 

accuracies during training are tested in hardware. In order to simulate on-chip training, one has 

to introduce memristive variations, weight discretization, and other hardware memristive data for 

each weight update. In contrast, off-chip training means that the network is first trained in 

software with no memristive data input. Once training is completed, the states of the memristive 

devices are updated in correspondence with the software weights. We should note that we 

obtained some rough approximations of the resulting classification accuracy, and hardly any 

simulation could account for all memristive non-idealities in both cases. 

Some devices (~ 10 %) in the crossbar were stuck in high-resistance state regardless of the input 

voltage. To simulate stuck devices, two random Boolean matrices (one with the reservoir 

dimensions, another one with readout dimensions) were created with a fixed ratio of true/false 

values (10% true, 90% false). The on-chip simulation was performed (Figure S12a). The weights 

were discretized according to the experimental data for each training epoch. The discretization 

process was slightly altered. The lowest possible value was attributed to each weight for which 

the corresponding Boolean matrix value was true, simulating the memristor stuck in high-

resistance state. In this case, off-chip training led to low accuracies. In off-chip training, the 

weights are discretized in the last step, and the training process is not adjusted to the locations of 

the stuck devices. Accuracy is strongly dependent on the random locations of the stuck devices. 

Alternatively, on-chip training adjusts to the stuck devices during training and achieves higher 

accuracy despite higher impact of the memristive variations on the results.    

 

Figure S12. (a) The classification accuracy on the validation dataset during the on-chip training. 

(b) The classification accuracy on the test dataset for the off-chip and on-chip trained model. 


