Supplementary Information (SI) for Nanoscale. This journal is © The Royal Society of Chemistry 2024

Supporting Information

2-D Transition Metal Trichalophosphogenide FePS₃ Against Multi-Drug Resistant Microbial Infections

SHREEHARI KODAKKAT¹, PIERRE H.A. VALLIANT,¹ SERENA CH'NG,¹ Z.L. SHAW,² MIYAH NAIM AWAD,¹ BILLY J. MURDOCH,¹ ANDREW J. CHRISTOFFERSON,¹ SAFFRON J. BRYANT,^{1,*} SUMEET WALIA,^{1,*} and AARON ELBOURNE^{1,*}

*Corresponding Authors

¹School of Science, RMIT University, Melbourne VIC 3001, Australia.

²School of Engineering, RMIT University, Melbourne VIC 3001, Australia.

Key words: antibacterial, antimicrobial, bacteria, fungi, iron phosphorus trisulfide

Supplementary Material

Figure S1. 3-D Structure of mechanically- exfoliated FePS₃ nanosheet (Monolayer)

Figure S2. Additional Characterization of flakes A) STEM image, B) H-R TEM image

Figure S3. XPS analysis of the exfoliatd flakes showing peaks in the (A) iron and (B) sulphur components.

Figure S4. Degradation of FePS₃ nanoflakes. A) STEM image of a degrading FePS₃ nanoflake after 24 hours under ambient conditions. Corresponding EDS images showing B) phosphorus, C) sulphur, and D) oxygen components.

Figure S5: Antimicrobial efficacy of positive controls. (A) Tetracycline was used as a positive control for bacterial strains (MRSA and *P. aeruginosa*) and (B) Fluconazole for *Candida albicans*. The concentrations used for both positive controls are in a range of 0.64-128 μ g/mL. Values are mean \pm SEM. n = 3.

Figure S6. Antimicrobial properties of FePS₃ nanoflakes against a series of fungal population densities. (A) CLSM images of control and treated *C. albicans*. (B) Relative quantification of cell death in fungi. (C) Fungal surface density (number of fungi/ μ m²) of *C. albicans* at different optical densities in both control and FePS₃-treated groups

Figure S7. UV-Vis adsorbance spectra of blank (in red) and FePS₃ treated samples (in green).

Figure S8. Hemolysis assay of FePS₃ nanoflakes against red blood cells. (A) 24 h and (B) 48 h. Cp corresponds to the positive control (C_p), and C_n negative control (treated with 100% ethanol).

Table S1. Table is recreated from Shaw *et al.*, **2021**¹. Comparative antimicrobial activity of commonly investigated nanomaterials. Abbreviations: BP: black phosphorus, NMP: N-methyl-2-pyrrolidone, DMPI: N,N'-dimethylpropyleneurea, PPMS: 4-pyridonemethylstyrene, NPs: nano-particles, NB: Not bactericidal, N/A: Not applicable, NR: Not reported. Material 1 highlighted in blue is that of this study.

-										
				Bacteria	Fungi	Cytotoxicity	Bactericidal Activity	Bacterial Treatmen t Times	Fungicidal Activity	Bactericidal Treatment time
Mechanically Exfoliated FePS ₃	Size: 2-4µm Thickness: 65nm	816.7 ng/cm ²	No	MRSA, P.aeruginosa	C.albicans	No	99.99% (MRSA) and 99.9% (<i>P.aeruginosa</i>)	4 hours	50% (C.albicans)	4 hours
Mechanically Exfoliated BP	Size: 500 nm - 5 μm Thickness: 15 – 90 nm	~900 ng/cm ²	No	E. coli, P. aeruginosa, MRSA, S. typhimurium, and B. cereus	<i>C. albicans</i> , <i>C. auris</i> and sensitive, fluconazole- resistant, and Amphotericin B-resistant <i>C.</i> <i>neoformans</i> .	No	96.3% (E.coli) and 96.2% (P. aeruginosa)	2 hours	99.92% (C. albicans) and 99.3% (C. neoformans {F ^R })	2 hours
NMP - BP with Ti-SA ₄ ²	Size: 220 nm Thickness: 5 nm	50 μg/mL	No	E. coli & S. aureus	No	NR	99.2% (E. coli), 94.6 % (S. aureus).	3 hr	NR	NR
DMPU - BP ³	Size: 0.1 - 4 μm. Thickness: 2 - 15.4 nm	160 μg/mL	Yes, NIR irradiation at 808 nm.	E. coli & S. aureus	No	NR	99.2%	3 - 10 min	NR	NR

Ag and BP nanosheets ⁴	AgNPs: 30 nm BP: 220 nm Thickness: 4 nm	25 - 40 μg/mL	Yes; NIR irradiation at 808 nm.	MRSA	No	No	93%.	5 min	NR	NR
DCM - BP with PPMS ⁵	Size: microns Thickness: 4.2 - 4.5 nm	100 µg/ml	Yes; irradiation at 660 nm	E. coli & S. aureus	No	No	99.3% & 99.2% (E. coli), 76.5% & 69.5% (S.aureus).	10 min	NR	NR
Millipore water - BP	Size: 215.8 nm Thickness: 1.6 nm	50- 100 μg/mL.	No	E. coli & B. subtilis	No	NR	91.65% & 99.69%	6 - 12 hr	NR	NR
Au-BP Nanosheets ⁶	Size: >100 nm Thickness: 2 nm	<10 µg/mL	No	E. coli	No	NR	94.7%	8 hr	NR	NR
BP-TiO ₂ ⁷	NR	25 μg/mL	Yes; UV- vis	E. coli & S. aureus	No	NR	NR	70 min	NR	NR
MoS ₂ Composites ^{8,} 9	Size: NR Thickness: 2.2 nm	≤1 mg/mL	Yes, NIR ⁸	E. coli & S. aureus	No	Concentration & system dependent ^{10, 11}	100%	≤6 hr	NR	NR
Ag NPs ¹²	Size: 4 - 24 nm	50 μg/mL	No	E. coli	Yes ¹³⁻¹⁶	Yes; shape & concentration dependent ¹⁷	100%	24 hr	Varying degrees. ^{15, 18}	NR
Au NPs ¹⁹	Size: 10 - 200 nm	Widely Variant	No	Controversial ¹⁹	Yes; ^{20, 21} controversial	Dose & size dependent ²⁴	NB	N/A	MIC: 4 - 48 μg/mL	NR
ZnO NPs ^{25, 26}	Size: 50 - 250 nm	0.25 g/L	Yes, UV- vis ^{25, 26}	E. coli & S. aureus	Numerous Species ²⁷⁻²⁹	Yes ³⁰⁻³²	Conditional, but >99%	2 hr	Yes ^{28, 29, 33}	NR

Graphene oxide (pure & reduced) ³⁴	Size: ~0.31 μm Size: ~2.75 μm	80 μg/mL	No	E. coli	Yes; ³⁵ enhanced with NIR ³⁶	Morphology, chemistry, sys dependent ^{37, 38}	Pure: 90% Reduced: 80%	2 hr	$\frac{IC_{50}:50-}{100}\\ \mu g/m L^{35}$	NR
Graphene oxide ³⁹	Size: 5 - 20 µm Thickness: 1.2 nm	200 μg/mL	No	None for pure graphene oxide	NR	NR	0%	N/A	NR	NR
TiO ₂ NPs ⁴⁰	Size: 79 nm	1200 μM	UV- visible Light	E. coli	Yes ⁴¹ , surface additive ^{42, 43}	Yes, concentration- & time- dependent manner. ⁴⁴	75% reduction	N/A	Yes ^{41, 45}	NR
Cu-TiO ₂ NPs ⁴⁶	Size: 15-50 nm	1 mg/mL	UV-vis	E. coli	NR	NR	100% reduction	N/A	NR	NR
Au nanostar ⁴⁷	Size: 50 – 100 nm	Monolayer of nanostar on glass	NIR laser	S. aureus	NR	NR	99%	30 min	NR	NR
Au nanocross ⁴⁸	Size: ~100 nm	0.2 mg/mL	NIR laser	P. aeruginosa	NR	NR	99%	5 min	NR	NR

References

- Z. L. Shaw, S. Kuriakose, S. Cheeseman, E. L. H. Mayes, A. Murali, Z. Y. Oo, T. Ahmed, N. Tran, K. Boyce, J. Chapman, C. F. McConville, R. J. Crawford, P. D. Taylor, A. J. Christofferson, V. K. Truong, M. J. S. Spencer, A. Elbourne and S. Walia, ACS Applied Materials & Interfaces, 2021, 13, 17340-17352.
- Z. Li, L. Wu, H. Wang, W. Zhou, H. Liu, H. Cui, P. Li, P. K. Chu and X.-F. Yu, ACS Applied Nano Materials, 2019, 2, 1202-1209.
- 3. Z. Sun, Y. Zhang, H. Yu, C. Yan, Y. Liu, S. Hong, H. Tao, A. W. Robertson, Z. Wang and A. A. H. Pádua, *Nanoscale*, 2018, **10**, 12543-12553.
- 4. J. Ouyang, R.-Y. Liu, W. Chen, Z. Liu, Q. Xu, K. Zeng, L. Deng, L. Shen and Y.-N. Liu, *Journal of Materials Chemistry B*, 2018, **6**, 6302-6310.
- L. Tan, J. Li, X. Liu, Z. Cui, X. Yang, K. W. K. Yeung, H. Pan, Y. Zheng, X. Wang and S. Wu, Small, 2018, 14, 1703197.
- 6. Q. Wu, M. Liang, S. Zhang, X. Liu and F. Wang, *Nanoscale*, 2018, **10**, 10428-10435.
- 7. H. Uk Lee, S. C. Lee, J. Won, B.-C. Son, S. Choi, Y. Kim, S. Y. Park, H.-S. Kim, Y.-C. Lee and J. Lee, *Scientific Reports*, 2015, **5**, 8691.
- W. Zhang, S. Shi, Y. Wang, S. Yu, W. Zhu, X. Zhang, D. Zhang, B. Yang, X. Wang and J. Wang, *Nanoscale*, 2016, 8, 11642-11648.
- 9. T. I. Kim, B. Kwon, J. Yoon, I.-J. Park, G. S. Bang, Y. Park, Y.-S. Seo and S.-Y. Choi, ACS Applied Materials & Interfaces, 2017, 9, 7908-7917.
- 10. W. Z. Teo, E. L. K. Chng, Z. Sofer and M. Pumera, *Chemistry A European Journal*, 2014, **20**, 9627-9632.
- 11. X. Wang, N. D. Mansukhani, L. M. Guiney, Z. Ji, C. H. Chang, M. Wang, Y.-P. Liao, T.-B. Song, B. Sun, R. Li, T. Xia, M. C. Hersam and A. E. Nel, *Small*, 2015, **11**, 5079-5087.
- 12. I. Sondi and B. Salopek-Sondi, *Journal of colloid and interface science*, 2004, **275**, 177-182.
- 13. S. W. Kim, J. H. Jung, K. Lamsal, Y. S. Kim, J. S. Min and Y. S. Lee, *Mycobiology*, 2012, **40**, 53-58.
- 14. E. J. J. Mallmann, F. A. Cunha, B. N. M. F. Castro, A. M. Maciel, E. A. Menezes and P. B. A. Fechine, *Rev Inst Med Trop Sao Paulo*, 2015, **57**, 165-167.
- 15. A. Panáček, M. Kolář, R. Večeřová, R. Prucek, J. Soukupova, V. Kryštof, P. Hamal, R. Zbořil and L. Kvítek, *Biomaterials*, 2009, **30**, 6333-6340.
- 16. J. J. Artunduaga Bonilla, D. J. Paredes Guerrero, C. I. Sánchez Suárez, C. C. Ortiz López and R. G. Torres Sáez, World Journal of Microbiology and Biotechnology, 2015, **31**, 1801-1809.
- 17. T. Zhang, L. Wang, Q. Chen and C. Chen, *Yonsei Med J*, 2014, **55**, 283-291.
- 18. Z.-K. Xia, Q.-H. Ma, S.-Y. Li, D.-Q. Zhang, L. Cong, Y.-L. Tian and R.-Y. Yang, *Journal of Microbiology, Immunology and Infection*, 2016, **49**, 182-188.
- 19. Y. Zhang, T. P. Shareena Dasari, H. Deng and H. Yu, *Journal of Environmental Science and Health, Part C*, 2015, **33**, 286-327.
- 20. T. Ahmad, I. A. Wani, I. H. Lone, A. Ganguly, N. Manzoor, A. Ahmad, J. Ahmed and A. S. Al-Shihri, *Materials Research Bulletin*, 2013, **48**, 12-20.
- C. E. Peña-González, E. Pedziwiatr-Werbicka, T. Martín-Pérez, E. M. Szewczyk, J. L. Copa-Patiño, J. Soliveri, J. Pérez-Serrano, R. Gómez, M. Bryszewska, J. Sánchez-Nieves and F. J. de la Mata, *International Journal of Pharmaceutics*, 2017, 528, 55-61.
- 22. P. Falagan-Lotsch, E. M. Grzincic and C. J. Murphy, *Proceedings of the National Academy of Sciences*, 2016, **113**, 13318-13323.
- 23. J.-Y. Wang, J. Chen, J. Yang, H. Wang, X. Shen, Y.-M. Sun, M. Guo and X.-D. Zhang, *International journal of nanomedicine*, 2016, **11**, 3475.
- 24. Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau and W. Jahnen-Dechent, Small, 2007, **3**, 1941-1949.
- 25. L. Zhang, Y. Jiang, Y. Ding, M. Povey and D. York, *Journal of Nanoparticle Research*, 2007, **9**, 479-489.
- 26. E. Ozkan, E. Allan and I. P. Parkin, *ACS Omega*, 2018, **3**, 3190-3199.

- 27. P. A. Arciniegas-Grijalba, M. C. Patiño-Portela, L. P. Mosquera-Sánchez, J. A. Guerrero-Vargas and J. E. Rodríguez-Páez, *Applied Nanoscience*, 2017, **7**, 225-241.
- 28. M. A. Gondal, A. J. Alzahrani, M. A. Randhawa and M. N. Siddiqui, *Journal of Environmental Science and Health, Part A*, 2012, **47**, 1413-1418.
- 29. A. Lipovsky, Y. Nitzan, A. Gedanken and R. Lubart, *Nanotechnology*, 2011, **22**, 105101.
- 30. V. Sharma, R. K. Shukla, N. Saxena, D. Parmar, M. Das and A. Dhawan, *Toxicology letters*, 2009, **185**, 211-218.
- 31. W. Song, J. Zhang, J. Guo, J. Zhang, F. Ding, L. Li and Z. Sun, *Toxicology letters*, 2010, **199**, 389-397.
- 32. V. Sharma, D. Anderson and A. Dhawan, *Apoptosis*, 2012, **17**, 852-870.
- 33. P. Arciniegas-Grijalba, M. Patiño-Portela, L. Mosquera-Sánchez, J. Guerrero-Vargas and J. Rodríguez-Páez, *Applied Nanoscience*, 2017, **7**, 225-241.
- 34. S. Liu, T. H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong and Y. Chen, *ACS nano*, 2011, **5**, 6971-6980.
- 35. M. Sawangphruk, P. Srimuk, P. Chiochan, T. Sangsri and P. Siwayaprahm, *Carbon*, 2012, **50**, 5156-5161.
- 36. M. Shahnawaz Khan, H. N. Abdelhamid and H.-F. Wu, *Colloids and Surfaces B: Biointerfaces*, 2015, **127**, 281-291.
- 37. S. Das, S. Singh, V. Singh, D. Joung, J. M. Dowding, D. Reid, J. Anderson, L. Zhai, S. I. Khondaker and W. T. Self, *Particle & Particle Systems Characterization*, 2013, **30**, 148-157.
- 38. K.-H. Liao, Y.-S. Lin, C. W. Macosko and C. L. Haynes, *ACS Applied Materials & Interfaces*, 2011, **3**, 2607-2615.
- 39. I. Barbolina, C. R. Woods, N. Lozano, K. Kostarelos, K. S. Novoselov and I. S. Roberts, *2D Materials*, 2016, **3**, 025025.
- 40. L. n. Brunet, D. Y. Lyon, E. M. Hotze, P. J. Alvarez and M. R. Wiesner, *Environmental science & technology*, 2009, **43**, 4355-4360.
- 41. F. Haghighi, S. Roudbar Mohammadi, P. Mohammadi, S. Hosseinkhani and R. Shipour, *Infection, Epidemiology and Microbiology*, 2013, **1**, 33-38.
- 42. S. Darbari, Y. Abdi, F. Haghighi, S. Mohajerzadeh and N. Haghighi, *Journal of Physics D: Applied Physics*, 2011, **44**, 245401.
- 43. N. Haghighi, Y. Abdi and F. Haghighi, *Applied Surface Science*, 2011, **257**, 10096-10100.
- 44. I.-S. Kim, M. Baek and S.-J. Choi, *Journal of Nanoscience and Nanotechnology*, 2010, **10**, 3453-3458.
- 45. N. S. Ahmad, N. Abdullah and F. M. Yasin, *BioResources*, 2019, **14**, 8866-8878.
- 46. M. Y. Guo, F. Liu, Y. H. Leung, Y. He, A. M. C. Ng, A. B. Djurišić, H. Li, K. Shih and W. K. Chan, *The Journal of Physical Chemistry C*, 2017, **121**, 24060-24068.
- 47. P. Pallavicini, A. Dona, A. Taglietti, P. Minzioni, M. Patrini, G. Dacarro, G. Chirico, L. Sironi, N. Bloise and L. Visai, *Chemical Communications*, 2014, **50**, 1969-1971.
- 48. C. P. Teng, T. Zhou, E. Ye, S. Liu, L. D. Koh, M. Low, X. J. Loh, K. Y. Win, L. Zhang and M. Y. Han, *Advanced healthcare materials*, 2016, **5**, 2122-2130.