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S1 Projection onto the anisotropic Dirac cone
(ADC)

To project the original Lieb SL TB Hamiltonian H onto the ADC
crossing point, we need the unitary transformation H̃ = UHU†

that gives

H̃ =
[
H0 T

T † H1

]
, (S.1)

where H0 is a 2 × 2 zero-eigenvalue block at the ADC crossing.
To find the unitary matrix U , the wave function is expressed in
a new basis where the first two components are a set, prescribed
linear combination of the basis states. First labelling the sites in
the Lieb SL according to their type (A, B, or C) and what unit cell
they sit in (n= 1,2, ...,N), this prescription is as follows:

1. take antisymmetric (symmetric) combinations of the |An⟩
and |Bn⟩ basis states in the well (barrier) regions, then com-
bine these symmetrically;

2. antisymmetrically combine every consecutive |Cn⟩ site state
throughout the superlattice;

3. the first (second) components in the new basis are then an-
tisymmetric (symmetric) combinations of the two above re-
sults;

4. the remaining states are chosen to be other, orthogonal com-
binations of the basis states that numerically evaluate to (ap-
proximately) zero to maintain orthonormality.

To demonstrate this we choose the simplest case of L= 2a. Fol-
lowing the procedure outlined above, the wave function written
in the new basis is

|ψ̃⟩ =U |ψ⟩ =



(|A1⟩ − |B1⟩ + |A2⟩ + |B2⟩)/2
√

2 + (|C1⟩ − |C2⟩)/2
(|A1⟩ − |B1⟩ + |A2⟩ + |B2⟩)/2

√
2 − (|C1⟩ − |C2⟩)/2

(|A1⟩ − |B1⟩ − |A2⟩ − |B2⟩)/2
(|A1⟩ + |B1⟩)/

√
2

(|A2⟩ − |B2⟩)/
√

2
(|C1⟩ + |C1⟩)/

√
2

 .
(S.2)

Then, performing the corresponding unitary transformation on
the original L= 2a Lieb SL Hamtiltonian H gives the 2 × 2 block

H0 =
[

0 i
√

2sin(kxa/2)
−i

√
2sin(kxa/2) 0

]
, (S.3)

which has the required two zero-eigenvalues at the location of the
ADC crossing.

S2 Continuum model calculation
The low energy and long wavelength continuum model calcula-
tion of the electronic states of the Lieb lattice under a 1D peri-
odic can be done using the Transfer Matrix (TM) formalism. The
eigenstates of the pristine system at low energies near the M point
(see Fig. 1(b)) are

ψα(rrr,kkk) =

sinϕkkk

α

cosϕkkk

eikkk·rrr, (S.4)

where α is the band index (+1 for the conduction band, 0 for
the flat band, −1 for valence band), kkk is measured from M, and
the propagation direction ϕkkk = tan−1(ky/kx). Translational in-
variance along y means the problem reduces to 1D. These are
matched at the well-barrier interface using the matching condi-
tions

ψ+
B(x) = ψ−

B(x), ψ+
C (x) = ψ−

C (x), (S.5)

in order to build the TM T . The + (−) correspond to states ap-
proaching the well-barrier interface from the left (right). The
TM is built using a product of the Wronskians W of the matched
eigenstates at the well-barrier interfaces, given by

T = Wkx,b
(L)W−1

kx,b
(W )Wkx,w

(W )W−1
kx,w

(0). (S.6)

Here, kx,w =
√(

E
h̄vF

)2 −k2
y and kx,b =

√(
E−V0
h̄vF

)2
−k2

y are the
x-components of kkk in the well and barrier regions. h̄vF is the
Fermi velocity of the Dirac bands. Explicitly, at a position x, we
have

Wk(x) =
[

αeikx αe−ikx

cos(ϕkkk)eikx −cos(ϕkkk)e−ikx

]
. (S.7)

The fact that Tr(T ) = 2cos(kxL), with kx the superlattice wave
vector along x, gives the dispersion relation

cos(kxL) =cos(kx,wW )cos
(
kx,bW

)
− 1

2 sin(kx,wW )sin
(
kx,bW

)(
cosϕ
cosθ + cosθ

cosϕ

)
,

(S.8)

where ϕ and θ are the propagation directions in the well and
barrier respectively.

S3 Supplementary figures
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Fig. S1. Band structure around the triply degenerate Dirac cone (TDDC). (a-d) The band structures along small reciprocal space distances q

measured from the TDDC. In each subplot the angle of this cut is rotated by ϕ (ϕ = 0 defined as along Y→M). (e) The low-energy L = 4a Lieb SL
band structure with TDDCs indicated.
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Fig. S2. Band structure around the Y point. (a-d) The band structures along small reciprocal space distances q measured from the Y point at
kkk = (0,π). In each subplot the angle of this cut is rotated by ϕ (ϕ = 0 defined as along Y→M). (e) The low-energy L = 4a Lieb SL band structure
with QFBCs indicated.
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Fig. S3. Band structure around the M point. (a-d) The band structures along small reciprocal space distances q measured from the M point at
kkk = (π/L,π). In each subplot the angle of this cut is rotated by ϕ (ϕ = 0 defined as along Y→M). (e) The low-energy L = 4a Lieb SL band structure
with QFBCs indicated.
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Fig. S4. Band structure around the anisotropic Dirac cone (ADC). (a-d) The band structures along small reciprocal space distances q measured
from the ADC crossing point at kkk = (0,π − V0/2). In each subplot the angle of this cut is rotated by ϕ (ϕ = 0 defined as along Y→M). (e) The
low-energy L = 4a Lieb SL band structure with ADC indicated.
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Fig. S5. Continuum vs Tight-Binding comparison for states near the Y point. The region of the Brillouin Zone as in Fig. 2(a-b) but allowing for
all kx values (0 < kx < π/L). For the continuum model description in (a), this amounts to allowing all solutions for the derived dispersion relation in
Eq. S.8. In (b), we superpose the calculated bands for 20 values of kx in the range (0 < kx < π/L).

Fig. S6. LDOS spectra for A, B and C sublattices under a smoothed potential. The potential parameters are L = 400a, V0 = 0.2t, as used in the
main text in Fig. 5. The smoothness parameter α = 10−2.
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Fig. S7. Full band structures of Lieb SL for different potential smoothness. The potential parameters are L = 100a, V0 = 0.2t. The smoothness
parameters are (a) α = 0.005, (b) α = 0.01, (c) α = 0.05. The reciprocal space distances |ΓΓΓX| and |MY| are kept artificially constant for visualisation
purposes. These distances are |ΓΓΓX| = |MY| = |YΓΓΓ|/N due to folding of the BZ. Each pair of discrete lattice symmetry broken states generate two
additional partial flat bands along ΓΓΓX and a doubly degenerate flat band along MY.
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Fig. S8. The braided bands at EEE === VVV 000///222 for different SL potential smoothness. States plotted along ky with ky measured from Y (as in main
text). The potential parameters are L = 400a, V0 = 0.2t, as used in the main text in Fig. 5. The smoothness parameters values used are (a) α = 0.001,
(b) α = 0.01, (c) α = 0.1.
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Fig. S9. Adding additional parameters to the pristine Lieb lattice. Pristine Lieb lattice (absence of periodic potential) band structures upon inclusion
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Fig. S10. Band structure around the TDDC with NNN hoppings. The same as Figure S1 but with a NNN hopping term t′ = −0.5t. The flat band
disperses for all directions except for ϕ = 0 (along Y→M).
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Fig. S11. Band structure around the Y point with NNN hoppings. The same as Figure S2 but with a NNN hopping term t′ = −0.5t. The dispering
flat band turns the quadratic flat band crossings (QFBCs) into quadratic band crossings (QBCs) with curvatures of opposite (same) sign at E = 0
(V0).
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Fig. S12. Band structure around the M point with NNN hoppings. The same as Figure S3 but with a NNN hopping term t′ = −0.5t.
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Fig. S13. Band structure around the ADC with NNN hoppings. The same as Figure S4 but with a NNN hopping term t′ = −0.5t.
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Fig. S14. Lieb SL band structure with next-nearest neighbour (NNN) hoppings. Band structures along high-symmetry directions for SL periodicities
(a) L = 4a, (b) L = 50a, and (c) L = 200a with a NNN hopping parameter t′ = −0.5t. The reciprocal space distances ΓX and MY are kept artificially
constant to visualise the band folding MY which remains unchanged from the nearest-neighbour only case.
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Fig. S15. Bands near the Y point for multiple kx values with next-nearest neighbours (NNN). Bands near the Y point plotted for 20 kx values in
the range kx : [0,π/L] with NNN hopping parameter t′ = −0.5t and SL periodicities (a) L = 50a, and (b) L = 200a. The shaded pink regions show
where electronic states are allowed in both well and barrier regions according to their respective pristine dispersions.
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Fig. S16. States near E = V0/2 with NNN. (a) Inclusion of NNN (blue curve) shifts the energies of additional crossings generated at large SL
periodicities compared to the NN only case (grey curve) (b) However, since the band folding along MY remains unchanged, the number and location
of additional cones is identical to that of the NN case (the blue and grey curve are overlaid).
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Fig. S17. Evolution of the SL dispersion and opening of a band gap with the inclusion of a mass term. Potential height is V0 = 0.2t in all plots.
In the discrete limit (top row, L = 4a), a mass term |U | > V0/2 is required to open a band gap. In the continuum limit (bottom row, L = 200a), a
mass term |U | > V0 is needed. Only positive values of U are shown, where the gap opens above the flat band at E = V0. For U < 0 the gap appears
below the flat band at E = 0. The shaded pink regions show where electronic states are allowed in both well and barrier regions according to their
respective pristine dispersions.
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Fig. S18. States near the SKT energies with a mass term. The SL height is V0 = 0.2t. (a) Fewer additional anisotropic cones are generated at the
“SKT” energies: E = V0/2 for the NN only case, and E = (V0 + U)/2 when mass term is included. Here, the SL periodicity is L = 200a. (b) For a
given V0, a larger periodicity L is required to close the gap at Y and generate the additional ADCs, hence fewer ADCs form in the presence of a mass
term.
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Fig. S19. Lieb SL band structure with an effective mass term. Band structures along high-symmetry directions for SL periodicities (a) L = 4a, (b)
L = 50a, and (c) L = 200a for a mass term U = 0.3t. The reciprocal space distances ΓX and MY are kept artificially constant to visualise the band
folding MY.
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Fig. S20. Bands near the Y point for multiple kx values with an effective mass term. Bands near the Y point plotted for 20 kx values in the range
kx : [0,π/L] with mass term U = 0.3t and SL periodicities (a) L = 50a, and (b) L = 200a. The shaded pink regions show where electronic states are
allowed in both well and barrier regions according to their respective pristine dispersions.

X M Y
0.1

0.0

0.1

0.2

0.3

E 
/ t

L = 4a

X M Y

L = 50a

X M Y

L = 200a(a) (b) (c)

Fig. S21. Lieb SL band structure with spin-orbit coupling (SOC). Band structures along high-symmetry directions for SL periodicities (a) L = 4a,
(b) L = 50a, and (c) L = 200a with an SOC interaction tSOC = 0.08t. The reciprocal space distances ΓX and MY are kept artificially constant to
visualise the band folding MY. Green and orange bands indicate the spin-splitting of the interface states that arises from discrete lattice symmetry
breaking at the well-barrier interface. This only occurs along XM and ΓY; the spin-up and spin-down states are degenerate along ΓX and MY.
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Fig. S22. States near E = V0/2 with a spin-orbit coupling (SOC) term. For SL periodicities (a) L = 4a, (b) L = 50a, (c) L = 200a, the number
and locations of the spin-polarised anisotropic cones remain unchanged, since the continuum states that would otherwise fold down to E = V0/2 are
prevented from doing so by the SOC term.
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Fig. S23. Lieb SL band structure with next-nearest neighbour (NNN) hoppings and a mass term. Band structures along high-symmetry directions
for SL periodicities (a) L = 4a, (b) L = 50a, and (c) L = 200a with NNN hoppings t′ = −0.5t and mass term U = 0.3t. The reciprocal space distances
ΓX and MY are kept artificially constant to visualise the band folding MY.
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Fig. S24. Bands near the Y point for multiple kx values with next-nearest neighbour hoppings and an effective mass term. Bands near the Y point
plotted for 20 kx values in the range kx : [0,π/L] for SL periodicities (a) L = 50a, and (b) L = 200a. The NNN hopping parameter t′ = −0.5t and
mass term U = 0.3t. The shaded pink regions show where electronic states are allowed in both well and barrier regions according to their respective
pristine dispersions.
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Fig. S25. Lieb SL band structure with all model parameters. Band structures along high-symmetry directions for SL periodicities (a) L = 4a, (b)
L = 50a, and (c) L = 200a with NNN hoppings t′ = −0.5t, mass term U = 0.3t, and SOC interaction tSOC = 0.08t. The reciprocal space distances
ΓX and MY are kept artificially constant to visualise the band folding MY.
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Fig. S26. Bands near the Y point for multiple kx values with all model parameters: next-nearest neighbour (NNN) hoppings, an effective mass
term, and spin-orbit coupling (SOC). Bands near the Y point plotted for 20 kx values in the range kx : [0,π/L] for SL periodicities (a) L = 50a, and
(b) L = 200a. The NNN hopping parameter t′ = −0.5t, the mass term U = 0.3t, and the SOC strength tSOC = 0.08t. The shaded pink regions show
where electronic states are allowed in both well and barrier regions according to their respective pristine dispersions.
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Fig. S27. Band structure of a ribbon configuration for a model including all parameters: next-nearest neighbour (NNN) hoppings, an effective
mass term, and spin-orbit coupling (SOC). Bands near kxa = 0 are plotted for SL periodicities L = 4a, 8a, 16a, and 32a. The width of the ribbon
is W = 40a. The NNN hopping parameter t′ = −0.5t, the mass term U = 0.3t, and the SOC strength tSOC = 0.08t.
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