Supplementary information

High-Performance van der Waals stacked transistors based on ultrathin GaPS₄ dielectrics

Zhilin Xiao^{1,2,} Binghuan Zeng^{1,2,} Fang Xu^{1,2,} Guangjian Liu^{1,2,} Hua Zhou^{3,} Jiaqi Chen^{1,2,} Linfeng Fei^{1,2,} Xiaxia Liao^{1,2,a),} Jiaren Yuan^{1,2,} Yangbo Zhou^{1,2}

¹School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China

²Jiangxi Provincial Key Laboratory of Photodetectors, School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China ³School of Physics, Shandong University, Shandanan Street 27, 250100 Jinan, P. R. China

^{a)}Authors to whom corresponding should be addressed: <u>liaoxiaxia@ncu.edu.cn</u>

1. XRD spectra of GaPS₄ powders.

Fig. S1. XRD spectra for $GaPS_4$ powders in the blue line, and in comparison with the standard PDF card in the red line. The card number is (PDF#50-8012)

2. We use EDS to analyze the quality of GaPS4 single crystal grown by CVT. As shown in the figure, we can see that the proportion of Ga, P, and S elements is close to 1:1:4, indicating that the quality of our singer crystal is very well.

Fig. S2. EDS spectrum of GaPS₄

3. Ultraviolet absorption Spectra of GaPS₄ thin Films with different thicknesses.

Fig. S3. (a) and (b) The fittings to these spectra to extract the optical band gap. (c) Absorption spectra of GaPS₄ flakes with different thicknesses.

4. UPS measurement of $GaPS_4$ and band misalignment between $GaPS_4$ and MoS_2 .

Fig. S4 (a) VBM of $GaPS_4$ crystal. (b) Work function of $GaPS_4$ crystal. (c) Band alignment between $GaPS_4$ and few-layer MoS_2 .

5. The performance of different GaPS4 gated MoS2 FETs.

To investigate the thickness-dependent effect, we fabricated four MoS₂/GaPS₄ transistors with different thicknesses. Then, we display the device with better performance in Figure 3, and the characterization of other additional devices is shown in Figure S4 of the supplementary information. The comparison of the extracted parameters is shown in Table S1. The results we obtained show that FETs assembled from MoS₂/GaPS₄ with different thicknesses have similar gate responses, and the mobility and threshold voltage of different devices are different. This may be due to the influence of electrode contacts such as metal (Ti/Ni) or the quality of MoS₂ Therefore, thickness effect is channels. the not an important factor affecting device performance.

Fig. S5 Optical images, gate transfer curves, and SS responses for an additional three $GaPS_4$ gated MoS_2 FET transistors. (a)-(c) Optical image, gate transfer curves, and SS responses for device 2. (d)-(f) Optical image, gate transfer curves, and SS responses for device 3. (g)-(i) Optical image, gate transfer curves and SS responses for device 4.

6. The performance of GaPS4 gated MoS2 FETs.

Fig. S6 The performance of FET (a) Typical dual-sweep transfer curves of the $MoS_2/GaPS_4$ measured under different V_{ds} from 0.05 to 1 V. (b) Dual gated transfer curves of the $MoS_2/GaPS_4$ FET under different back-gate voltages. (c) Extracted SS value versus I_{ds} characteristics of the device in a, showing a low SS value (< 70 mV/decade) for a wide I_{ds} range. (d) The extracted threshold voltage V_{th} from b is a function of V_{BG} .

Table S1. Extracted parameters for the performance of MoS_2 FETs using GaPS₄ as a top gate dielectric.

Device No.	Thickness of	Thickness of	On/Off Ratio	Mobility	Threshold	SS
	$MoS_2(nm)$	GaPS ₄ (nm)		$(cm^2/V \cdot s)$	voltage (V)	(mv/dec)
1(Figure 3)	7	22	107	14.2	-0.78	80
2	10	48	104	16.67	-0.46	100
3	4	20	105	8.78	-0.59	110
4	9	30	106	14.68	-0.27	135

7. Dielectric characteristics of GaPS₄

Fig. S7 (a) Optical image and schematic diagram of micro-sized GaPS₄ capacitor used for dielectric measurements, with a metal/GaPS₄/metal sandwich structure. (b) Extracted dielectric constant as a function of frequency from 1 kHz to 1000 kHz for a 40 nm thick flake. (c) Dielectric constant measured at 40 kHz for different thicknesses of flakes.

'	Table S2. Comparisor	n of the dielect	ric properties	and the corre	sponding FET
1	performance of GaPS.	4 with other 2I) dielectric m	aterials	

Dielectric	$\mathbf{E}_{\mathbf{g}}$	E _r	FET channel	Ion/Ioff	SS	refs
SnP ₂ S ₆	2.23	23	MoS ₂	107	69.4	1
CaF ₂	12.1	8.4	MoS ₂	106	91	2
h-BN	6	3.9	MoS ₂	106	80	3
SiP ₂	2.14	8.1	MoS ₂	105	-	4
GaInS ₃	2.91	12	MoS ₂	107	71.2	5
LaOBr	5.3	8	MoS ₂	108	85	6
MnAl ₂ S ₄	3.65	6.1	MoS ₂	107	80	7
Sr ₂ Nb ₃ O ₁₀	3.8	24.6	MoS ₂	106	88	8
$In_2P_3S_9$	3.5	24	MoS ₂	105	88	9
GaPS ₄	3.55	5.3	MoS_2	107	80	This work

Reference

- J. Hu, A. Zheng, E. Pan, J. Chen, R. Bian, J. Li, Q. Liu, G. Cao, P. Meng, X. Jian, A. Molnar, Y. Vysochanskii and F. Liu, *Journal of Materials Chemistry C*, 2022, 10, 13753-13761.
- Y. Y. Illarionov, A. G. Banshchikov, D. K. Polyushkin, S. Wachter, T. Knobloch, M. Thesberg, L. Mennel, M. Paur, M. Stöger-Pollach, A. Steiger-Thirsfeld, M. I. Vexler, M. Waltl, N. S. Sokolov, T. Mueller and T. Grasser, *Nature Electronics*, 2019, 2, 230-235.
- G.-H. Lee, X. Cui, Y. D. Kim, G. Arefe, X. Zhang, C.-H. Lee, F. Ye, K. Watanabe, T. Taniguchi, P. Kim and J. Hone, *ACS Nano*, 2015, 9, 7019-7026.
- 4. Z. Li, J. Huang, L. Zhou, Z. Xu, F. Qin, P. Chen, X. Sun, G. Liu, C. Sui, C. Qiu, Y. Lu, H. Gou, X. Xi, T. Ideue, P. Tang, Y. Iwasa and H. Yuan, *Nature Communications*, 2023, 14, 5568.
- Z. Sun, J. Liu, Y. Xu, X. Xiong, Y. Li, M. Wang, K. Liu, H. Li, Y. Wu and T. Zhai, *Advanced Materials*, 2024, 36, 2410469.
- 6. A. Söll, E. Lopriore, A. Ottesen, J. Luxa, G. Pasquale, J. Sturala, F. Hájek, V. Jarý,
 D. Sedmidubský, K. Mosina, I. Sokolović, S. Rasouli, T. Grasser, U. Diebold, A. Kis and Z. Sofer, ACS Nano, 2024, 18, 10397-10406.
- 7. F. Xu, Z. Wu, G. Liu, F. Chen, J. Guo, H. Zhou, J. Huang, Z. Zhang, L. Fei, X. Liao and Y. Zhou, ACS Applied Materials & Interfaces, 2022, 14, 25920-25927.
- 8. S. Li, X. Liu, H. Yang, H. Zhu and X. Fang, Nature Electronics, 2024, 7, 216-224.
- C.-Y. Zhu, J.-K. Qin, P.-Y. Huang, H.-L. Sun, N.-F. Sun, Y.-L. Shi, L. Zhen and C.-Y. Xu, *Small*, 2022, 18, 2104401.