Supporting Information

Hot Carrier Dynamics in BA₂PbBr₄/MoS₂ Heterostructure

Sumaiya Parveen¹, Pratap Kumar Pal¹, Suchetana Mukhopadhyay¹, Sudipta Majumder²,

Swapneswar Bisoi², Atikur Rahman² and Anjan Barman^{1,*}

¹Department of Condensed Matter and Materials Physics, S.N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata-700106, India ²Department of Physics, Indian Institute of Science Education and Research, Dr. Homi Bhaba Road, Pune 411008, India *Corresponding author's email address: abarman@bose.res.in

Fig. S1: FESEM image of 2D perovskite sheets.

Fig. S2: Optical microscope image of MoS₂ monolayer.

Fig. S3: (a) The absorption spectrum of BA_2PbBr_4 perovskite. (b) Comparative differential reflectance spectra of bare samples and the heterostructure.

Fig. S4: (a) PL mapping of the heterostructure sample with excitation of 532 nm laser and the corresponding microscopic region. (b) PL mapping collected after one week on the heterostructure. The slight variation in intensity was due to different accumulation time.

Table S1: Parameters extracted from the fit of time-resolved reflectivity data with a bi-

exponential decay function:

$$\frac{\Delta R}{R} = A_1 exp(-t/\tau_1) + A_2 exp(-t/\tau_2)$$

Here, A_1 and A_2 are the decay constants, and τ_1 and τ_2 are the fast and slow decay times, respectively.

Sample	$ au_l$ (ps)	A_{I}	$ au_2$ (ps)	A_2
BA ₂ PbBr ₄	24.7	0.01279	195	0.00704
MoS ₂	29.5	0.01144	202	0.00773
BA ₂ PbBr ₄ /MoS ₂	31.4	0.01212	215	0.00686

 Table S2: Parameters extracted from the fit of time-resolved electron temperature data

Sample	$\tau_{e-ph} (ps)$	A _{e-ph}	$\tau_{ph} (ps)$	A _{ph}	τ_{avg}	k _{e-ph} / k _{ph}
BA ₂ PbBr ₄	2.42	34499.12	105.9	2150.6	8.49	43.76
MoS ₂	3.38	22093.82	180.9	2248.7	19.78	53.52
BA ₂ PbBr ₄ /MoS ₂	3.01	23115.78	172.89	1871.6	15.73	57.43

Fig. S5: Energy rate variation in pristine 2D perovskite BA_2PbBr_4 , MoS_2 and MoS_2/BA_2PbBr_4 heterostructure.