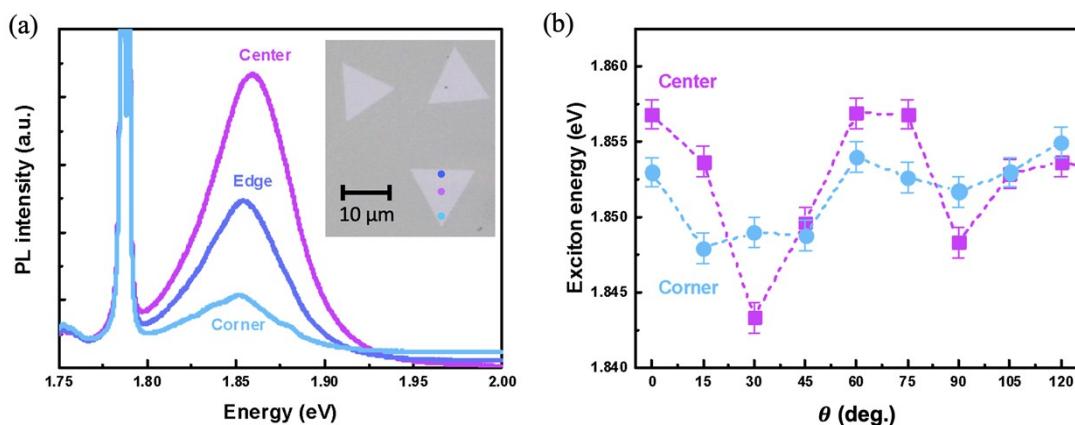


(Supplementary Materials)

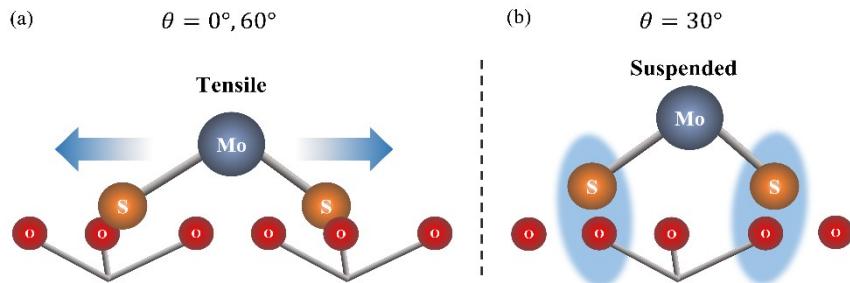
Intrinsic setting of exciton state in MoS₂ monolayer via tailoring Moiré correlation with a sapphire substrate

Chun-Wen Chan^a, Fang-Mei Chan^a, Sheng-Kuei Chiu^{b,c}, Lu-Chih Chen^c, Wun-Jhen Yu^a, Chia-Yun Hsieh^a, Chao-Yao Yang^{a,d*}


^aDepartment of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan

^bDepartment of Materials Science, National University of Tainan, Tainan 70005, Taiwan.

^cDepartment of Materials Science and Engineering, Feng Chia University, Taichung City, 407102, Taiwan.


^dCenter for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan.

Supplementary Materials 1|Site-dependent PL spectra on an MoS₂ monolayer domain with θ -dependency, which shows significant PL redshift together with intensity drop while collecting the PL spectra at the edge of the MoS₂ domains.

Fig. S1 (a) Site-selected PL spectra of MoS₂ monolayer acquired at center (violet), edge (deep blue), and corner (blue), as highlighted in the optical image in the inset. (b) Plots of exciton energy taken at the center and corner of MoS₂ monolayers as a function of θ . Note: the plots of $\theta > 60$ deg were arbitrarily selected to extend the 6-fold periodicity.

Supplementary Materials 2|Conceptual demonstration for the tensile stress induced via the closely packed stack.

Fig. S2 Atomic stacking configuration for the case of (a) $\theta = 0^\circ/60^\circ$ and (b) $\theta = 30^\circ$. In **Fig. S2(a)**, the preferred population of S atoms at the pseudo-interstitial sites, locating at the pyramid tops formed by three O atoms, induces tensile strain in the MoS_2 monolayer. In contrast, in **Fig. S2(b)**, the mismatched stacking between MoS_2 and Al_2O_3 may drive S atoms to primarily occupy the positions directly above O atoms, resulting in a pseudo-suspended configuration.