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Fig. S1. (a) Top and (b) bottom SEM images of the fabricated suspended bilayer metasurfaces. It is 

worth nothing that we usually fabricate different types of nanostructures on the same substrate. The 

metagratings used in this work are highlighted by the white solid squares. 



 

Fig. S2. (a–i) Simulated transmittance spectra of the +45°-arranged moiré metasurface for the gap 

distance from 0 to 450 nm. 

 



  

Fig. S3. (a) Experimentally measured and (b) correspondingly simulated transmittance spectra of 

various incident/output handedness combinations. Tlr (Trl) refers to the intensity of the LCP (RCP) 

transmittance component under the incident RCP (LCP) light. 

 

Fig. S4. (a) Measured and (b) simulated CD in degrees with twisted angle θ ranging from 45° to 0°. 

The CD signal in degree is extracted by the following equation:9,11 
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where TRCP and TLCP indicate the transmittance for incident RCP and LCP light. The measured 

CD spectra are in reasonable agreement with the simulated ones within the resonance range of 

interest. The differences between measured and simulated results above 1100 nm could be 



mainly attributed to the low transmittance in this wavelength range. The small value of 

denominator in Eq. S1 makes pronounced large CD in the simulations, which actually can be 

ignored in the CDT spectra. Thus, we focus more on the chiroptical responses around 825 nm. 

 

Table S1. Comparison of the ratios (the resonance wavelength to the meta-atom period) retrieved 

from our work and other reported literatures. 

 

 

 

 

Fig. S5. Simulated transmittance spectra of the +45°-arranged moiré metasurface composed of two 

sheets of a single-layer metagrating. 

 

 

 



 

Table S2. Comparison of biomolecular chirality discrimination from relevant literatures and our work. 

 

 

Fig. S6. (a–c) CD spectra for ±45°-arranged moiré metasurfaces with and without (a) BH, (b) BSA and 

(c) Concanavalin A, respectively. 

  



 
Fig. S7. Measured transmittance spectra of bilayer Si3N4 membranes (a) without and (b–d) with proteins 

including (b) BH, (c) BSA and (d) Concanavalin A, respectively. 
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