Supporting Information

Flexible Wearable Piezoresistive Physical Sensor with Photothermal Conversion and Self-Cleaning Functions for Human Motion Monitoring

Xingzhong Chen^{a#}, Qianqian Tian^{b#}, Zheng Xiong^a, Min Wu^b, Xiao Gong^{*a}

- a. State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China.
- b. Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China

* Corresponding author:

E-mail addresses: xgong@whut.edu.cn (X. Gong)

equal contribution

Figure S1. SEM images of pristine CFs (a), CNT CFs (b), and DPC-CFs (c), respectively (scale bar: $10 \ \mu m$).

Figure S2. The influence of underwater on the superhydrophobicity of DPC-CFs surface.

Figure S3. Digital photographs of water, juice, cola, milk, coffee, and tea droplets on superhydrophobic DPC-CFs.

Figure S4. The adhesion performance of water droplets on the superhydrophobic surface of the DPC-CFs.

Figure S5. Assembly of DPC-CFs-based piezoresistive sensor.