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Fig. S1: Au electrode preparation and ligand exchange schematic.
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Fig. S2: Assessment of the Au-LE surface chemistry. Raman spectra (a) and XPS for O 1s (b), C 1s (c), and
N 1s (d). Brown traces correspond to as prepared Au-LE, bright orange traces correspond to Au-LE
extensively washed with acetonitrile, and light orange traces correspond to the Au-LE surface after EC for
1 hat-1.5Vvs Ag/Ag+.
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3ECSA was calculated using an arbitrary charge of 274 pC cm

Fig. S3: Pbypp of Au nanoparticle electrodes with a loading of 1 mg cm and the corresponding
electrochemically active surface area (ECSA). Au-CPC (black trace), Au-citrate (red trace), and Au-LE (blue
trace). CV was recorded in 0.1 M NaOH with the addition of 1 mM Pb(NO3); at a scan rate of 20 mV s
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Fig. S4: Electrode stability in EC during short term electrolysis. (a,b) Consecutive 1h CAs under
typical EC conditions at -1.5 V vs Ag/Ag"* for Au-CPC electrode (a) and Au-citrate electrode(b). (c)
Carboxylate FE change upon the electrode repeated use.
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Fig. S5: XPS evaluation of adsorbed Br based on the Br 3d peak for Au-CPC and Au-citrate electrodes.
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Au-CPC c/Au | NAu | NiC are close to that in CP* (0.048, highlighted orange)
meaning most of the C source in these samples
before 302 | 015 | 0.05 | come from CPC. For Au-CPC EC -1.5 V N/C ratio
CH,CN 1.3 [ 0.059 | 0.045 is drastically decreased to 0.025 and pyridinium N
EC at-15V 104 | 0026 | 0.025 mostly disappears from XPS (Figure 3g). As new N
- : : - source is most likely coming from TBA* with higher
N N/C ratio of 0.0625 we can approximate C/Au ratio
o () XPS — X () xps for non-N containing organic molecules on the
Au \Au (g) calculated  \AU surface being 0.624 using the equation on the left.

Thus, that C is coming from the EC precursor and
intermediates (e.g. e)

Fig. S6: Description of XPS evaluation of adsorbed organic molecules for Au-CPC.
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Fig. S7: XRD evaluation of Au-CPC (a) and Au-citrate (b) crystallinity. Au-CPC showing narrow
representative peaks of single crystalline Au, while Au-citrate showing broadened peaks with bands
characteristic of polycrystalline Au materials.



