Supplementary Information (SI) for Nanoscale. This journal is © The Royal Society of Chemistry 2025

Supplementary Information

Superconductivity in o-MAX phases

Mohammad Keivanloo¹, Mohammad Sandoghchi¹, MohammadReza Mohammadizadeh², Mitsuaki Kawamura³, Hannes Raebiger⁴, Kenta Hongo⁵, Ryo Maezono⁵, Mohammad Khazaei^{1,6*}

¹Department of Physics, University of Tehran, North Kargar Ave, Tehran 14395-547, Iran. ²Superconductivity Research Laboratory (SRL), Department of Physics, University of Tehran, North Kargar Ave., Tehran 14395-547 ³Information Technology Center, The University of Tokyo, Bunkyo 113-8658, Japan ⁴Yokohama National University, Department of Physics, 240-8501 Yokohama, Japan ⁵Research Center for Advanced Computing Infrastructure, JAIST, Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan ⁶School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran

Material	Formation Energy (eV/atom)	a(A)	c(A)	Volume(A ³)
Mo ₂ HfAlC ₂	-0.476	3.07	19.24	156.39
Mo ₂ NbAlC ₂	-0.313	3.07	18.75	153.08
Mo ₂ ScAlC ₂	-0.387	3.05	19.08	153.88
Mo ₂ TaAlC ₂	-0.342	3.06	18.74	152.45
Mo ₂ TiAlC ₂	-0.470	2.99	18.77	146.32
Mo ₂ VAIC ₂	-0.287	2.97	18.57	142.61
Mo ₂ YAlC ₂	-0.214	3.14	19.42	166.16
Mo ₂ ZrAlC ₂	-0.416	3.10	18.99	158.30
Material	Formation Energy (eV/atom)	a(A)	c(A)	volume(A ³)
Nb ₂ HfAlC ₂	-0.710	3.16	19.22	167.03
Nb ₂ ScAlC ₂	-0.596	3.18	19.21	168.43
Nb ₂ TaAlC ₂	-0.617	3.11	19.23	161.24
Nb ₂ TiAlC ₂	-0.673	3.10	18.89	157.88
Nb ₂ VAlC ₂	-0.512	3.04	19.20	153.88
Nb ₂ YAlC ₂	-0.461	3.25	19.75	181.39
Nb ₂ ZrAlC ₂	-0.663	3.17	19.69	171.71
Material	Formation Energy (eV/atom)	a(A)	c(A)	volume(A ³)
W ₂ HfAlC ₂	-0.375	3.05	19.24	154.92
W2NbAlC2	-0.176	3.04	19.19	154.77
W ₂ ScAlC ₂	-0.328	3.02	19.29	152.74
W ₂ TaAlC ₂	-0.201	3.05	18.80	151.96
W ₂ TiAlC ₂	-0.378	2.98	18.88	145.97
W ₂ VAIC ₂	-0.167	2.96	18.69	142.45
W ₂ YAIC ₂	-0.137	3.12	19.83	167.99
W ₂ ZrAlC ₂	-0.309	3.07	19.47	157.49

Table1S. Lattice parameters, volume and formation energy of the hexagonal M'2MAlC2.

W	2TaAlC2		V V	V ₂ VAIC ₂		W2NbAlC2			Mo ₂ NbA		AIC ₂			
Bonding interaction	Bond length(A)	ICOHP (eV)	Bonding interaction	Bond length(A)	ICOHP (eV)	Bondin	ig ion	Bond length(A)	ICOHP (eV)	B	onding eraction	Bone	d (A)	ICOHP (eV)
W-W	3.05	-1.08	W-W	2.96	-1.31	W-W 3.04		-1.11	Mo-Mo		3.07 -0		-0.80	
W-Ta	3.07	-1.13	W-V	2.99	-0.86	W-N	b	3.10	-0.96	-0.96 M		3.0	6	-0.85
W-Al	2.80	-2.22	W-Al	2.80	-2.19	W-A	1	2.84	-2.12 N		Mo-Al 2.8		1	-1.87
W-C	2.12	-4.19	W-C	2.11	-4.49	W-C	2	2.12	-4.23	-4.23 M		2.1	1	-4.02
Ta-C	2.20	-3.93	V-C	2.10	3.03	Nb-O	2	2.22	-3.58	1	Nb-C 2.2.		2	-3.61
Ta-Ta	3.05	-1.32	V-V	2.96	-0.55	Nb-N	ľb	3.04	-1.10	N	Nb-Nb 3.07		7	-1.00
	Mo ₂ H	fAIC ₂			Moa	TaAlC ₂	1				Mo ₂ T	'iAlC ₂	AIC ₂	
Bonding interaction	Bond le	ngth(A)	ICOHP (eV)	Bonding interaction	n le	Bond ngth(A)	I	COHP (eV)	Bonding interaction		Bond len	gth(A)	IC	OHP (eV)
Mo-Mo	3.	07	-0.81	Mo-Mo)	3.06		-0.84	Mo-Mo		2.9	9	-0.96	
Mo-Hf	3.	14	-0.88	Mo-Ta		3.05		-1.02	Mo-T	ï	3.04		-0.67	
Mo-Al	2.	78	-1.95	Mo-Al		2.81		-1.84	Mo-Al		2.79		-1.89	
Mo-C	2.	14	-3.89	Mo-C		2.12		-3.97	Mo-C		2.11		-4.18	
Hf-C	2.	26	-3.67	Ta-C		2.20		-3.94	Ti-C		2.15		-2.92	
Hf-Hf	3.	07	-1.44	Та-Та		3.06		-1.26	Ti-Ti		2.99		-0.63	
N	102VAIC2	ICOUR	N Banding	102YAIC2	ICOUR	Dondin	M	lo2ZrAIC2			Nb2HfA		AIC ₂	
interaction	length(A)	(eV)	interaction	length(A)	(eV)	interact	ion	length(A)	(eV)	int	eraction	length	(A)	(eV)
Mo-Mo	2.97	-0.99	Mo-Mo	3.14	-0.66	Mo-N	10	3.10	-0.75	N	lb-Nb	3.1	6	-0.85
Mo-V	2.96	-0.68	Mo-Y	3.29	-0.70	Mo-Z	Zr	3.16	-0.77	N	lb-Hf	3.1	7	-0.97
Mo-Al	2.80	-1.82	Mo-Al	2.77	-2.05	Mo-A	41	2.78	-1.97	N	Jb-Al 2.8		7	-1.88
Mo-C	2.09	-4.27	Mo-C	2.12	-4.16	Mo-0	2	2.13	-4.01	1	vb-C	2.13	8	-3.97
V-C	2.10	-3.01	Y-C	2.45	-2.74	Zr-C	-	2.30	-3.29	1	Hf-C	2.2	9	-3.45
V-V	2.97	-0.49	Y-Y	3.14	-1.71	Zr-Z	r	3.10	-1.19	9 Hf-Hf		3.10	6	-1.18
Ronding	b2ScAIC2 Bond	ІСОНР	Bonding	b2TaAIC2 Bond	ІСОНР	Bondir	N	Bond	Nb2V		Nb ₂ VA	IC2	ІСОНР	
interaction	length(A)	(eV)	interaction	length(A)	(eV)	interact	ion	length(A)	(eV)	int	eraction	length	(A)	(eV)
Nb-Nb	3.18	-0.77	Nb-Nb	3.11	-1.02	Nb-N	ľb	3.10	-0.94	N	lb-Nb	3.04	4	-1.12
Nb-Sc	3.14	-0.71	Nb-Ta	3.13	-1.00	Nb-T	ï	3.05	-0.75	1	vb-V	3.0	1	-0.71
Nb-Al	2.90	-1.80	Nb-Al	2.87	-1.81	Nb-A	<u>.l</u>	2.87	-1.84	N	Nb-Al 2.9		0	-1.73
Nb-C	2.14	-4.49	Nb-C	2.19	-3.82	Nb-C	2	2.16	-4.30	1	Nb-C	2.1	2.15 -4.2	
Sc-C	2.33	-2.27	Ta-C	2.21	-3.87	11-C		2.19	-2.68		V-C	2.1	2	-2.86
Sc-Sc	3.18 Nb V	-0.57	1a-1a	3.11	-1.13		1	3.10	-0.49 V-V 3.0		3.04	4	-0.42	
Bonding	Bond le	AIC ₂	ICOHP (eV)	Bonding	IND2	ZrAIC2 Bond	I	COHP (eV)	Bonding Rond length(A)		IAIC2	I	COHP (eV)	
interaction	2	25	0.65	interaction	n le	ngth(A)		0.90	interaction		n 2.05		1 10	
NIL V	3.	23	-0.03	ND-ND Nh Zr		2 00		-0.80	W-W WILL		5.03 F 2.16		-1.10	
Nb-Al	2.	90	-1.83	Nb-Al		2		-1.88	W-A1		2.80		-2.25	
Nb-C	2.	16	-4.28	Nb-C		2.18		-4.09	W-C		2.00		-4.12	
Y-C	2.	49	-2.53	Zr-C		2.34		-3.08	Hf-C		2.2	25 -3.69		-3.69
Y-Y	3.	25	-1.36	Zr-Zr		3.18		-1.01	Hf-H:	If 3.05		5 -1.55		
	W ₂ Ti	AIC ₂			W2	YAIC ₂		V		W ₂ Z ₁	V2ZrAIC2			
Bonding interaction	Bond le	ngth(A)	ICOHP (eV)	Bonding interaction	n le	Bond ngth(A)	I	COHP (eV)	Bonding	g on	Bond ler	ngth(A)	10	COHP (eV)
W-W	2.	98	-1.26	W-W		3.12		-0.91	W-W	r	3.0)8		-0.98
W-Ti	3.	06	-0.86	W-Y		3.35		-0.77	W-Zr 3.17		7 -0.94		-0.94	
W-Al	2.	79	-2.25	W-Al		2.79		-2.35	W-Al		2.78		1	-2.36
W-C	2.	12	-4.41	W-C		2.15		-4.27	W-C		-2.13		-4.26	
Ti-C	2.	15	-2.94	Y-C		2.45		-2.76	Zr-C		2.2	29		-3.33
Ti-Ti	2.	98	-0.68	Y-Y		3.12		-1.78	Zr-Zr		3.()8		-1.26

Table 2S. ICOHP and bond length of different bonding in M'2MAlC2 structures.

Material	$T_{c}(K), (\mu^{*} = 0.1 - 13)$	Wlog(K)	λ
Mo ₂ HfAlC ₂	2.5-1.37	274.5	0.46
Mo ₂ NbAlC ₂	11.0-8.7	273.1	0.74
Mo ₂ ScAlC ₂	3.6-2.1	327.2	0.48
Mo ₂ TaAlC ₂	8.8-6.7	258.4	0.69
Mo ₂ TiAlC ₂	2.7-1.4	314.9	0.46
Mo ₂ VAlC ₂	8.0-5.7	316.1	0.62
Mo ₂ YAlC ₂	6.8-4.8	280.3	0.61
Mo ₂ ZrAlC ₂	3.9-2.4	280.2	0.51
Material	$T_{c}(K), (\mu^{*} = 0.1 - 13)$	Wlog(K)	λ
Nb ₂ HfAlC ₂	0.5-0.1	365.1	0.34
Nb ₂ ScAlC ₂	0.0-0.0	413.8	0.26
Nb ₂ TaAlC ₂	0.0-0.0	350.9	0.21
Nb ₂ TiAlC ₂	0.5-0.1	371.3	0.34
Nb ₂ VAlC ₂	0.9-0.3	388.5	0.36
Nb ₂ YAlC ₂	0.3-0.07	381.4	0.32
Nb ₂ ZrAlC ₂	0.3-0.07	379.8	0.31
Material	$T_{c}(K), (\mu^{*} = 0.1 - 13)$	ω _{log} (K)	λ
W ₂ HfAlC ₂	3.3-2.1	231.1	0.52
W ₂ NbAlC ₂	14.8-12.5	215.4	0.99
W_2ScAlC_2	0.1-0.03	296.5	0.3
W ₂ TaAlC ₂	14.5-12.45	198.3	1.02
W ₂ TiAlC ₂	1.8-0.9	269.2	0.43
W ₂ VAlC ₂	17.9-15.1	259.6	0.98
W ₂ YAlC ₂	1.9-1.1	261.5	0.44
W ₂ ZrAlC ₂	4.3-2.8	231.7	0.56

Table 3S. Superconductivity transition temperature for μ^* value 0.1 and 0.13, logarithmic average frequency and electron–phonon coupling parameters (λ).

Fig1S. Crystal Orbital Hamilton Population (COHP) analysis of **a**) Mo₂HfAlC₂ **b**) Mo₂NbAlC₂ **c**) Mo₂TaAlC₂ **d**) Mo₂TiAlC₂ **e**) Mo₂VAlC₂ **f**) Mo₂YAlC₂ **g**) Mo₂ZrAlC₂ **h**) Nb₂HfAlC₂ **i**) Nb₂ScAlC₂ **j**) Nb₂TaAlC₂ **k**) Nb₂TiAlC₂ **l**) Nb₂YAlC₂ **m**) Nb₂ZrAlC₂ **n**) W₂HfAlC₂ **o**) W₂NbAlC₂ **p**) W₂TaAlC₂ **q**) W₂TiAlC₂ **r**) W₂VAlC₂ **s**) W₂YAlC₂ **t**) W₂ZrAlC₂.

a) Mo₂HfAlC₂

b) Mo₂NbAlC₂

c) Mo₂ScAlC₂

d) Mo₂TaAlC₂

e) Mo₂TiAlC₂

f) Mo₂VAlC₂

g) Mo₂YAlC₂

h) Mo₂ZrAlC₂

i) Nb₂HfAlC₂

j) Nb₂ScAlC₂

k) Nb₂TaAlC₂

I) Nb₂TiAlC₂

m) Nb₂YAlC₂

n) Nb₂ZrAlC₂

o) W₂HfAlC₂

p) W₂NbAlC₂

q) W₂ScAlC₂

r) W₂TaAlC₂

s) W₂TiAlC₂

t) W₂VAlC₂

u) W₂YAlC₂

v) W₂ZrAlC₂

Fig 2S. Total and partial Band structure and density of states of **a**) Mo₂HfAlC₂ **b**) Mo₂NbAlC₂ **c**) Mo₂ScAlC₂ **d**) Mo₂TaAlC₂ **e**) Mo₂TiAlC₂ **f**) Mo₂VAlC₂ **g**) Mo₂YAlC₂ **h**) Mo₂ZrAlC₂ **i**) Nb₂HfAlC₂ **j**) Nb₂ScAlC₂ **k**) Nb₂TaAlC₂ **l**) Nb₂TiAlC₂ **m**) Nb₂YAlC₂ **n**) Nb₂ZrAlC₂ **o**) W₂HfAlC₂ **p**) W₂NbAlC₂ **q**) W₂ScAlC₂ **r**) W₂TaAlC₂ **s**) W₂TiAlC₂ **t**) W₂VAlC₂ **u**) W₂YAlC₂ **v**) W₂ZrAlC₂ (The Fermi energy is set at zero).

Fig 3S. 3D Fermi surface combined with color drawn to indicate the relative Fermi velocity v_F for a) Mo₂HfAlC₂ b) Mo₂NbAlC₂ c) Mo₂ScAlC₂ d) Mo₂TaAlC₂ e) Mo₂TiAlC₂ f) Mo₂VAlC₂ g) Mo₂YAlC₂ h) Mo₂ZrAlC₂ i) Nb₂HfAlC₂ j) Nb₂ScAlC₂ k) Nb₂TaAlC₂ l) Nb₂TiAlC₂ m) Nb₂YAlC₂ n) Nb₂ZrAlC₂ o) W₂HfAlC₂ p) W₂NbAlC₂ q) W₂ScAlC₂ r) W₂TaAlC₂ s) W₂TiAlC₂ t) W₂VAlC₂ u) W₂YAlC₂ v) W₂ZrAlC₂.

a) Mo₂HfAlC₂

b) Mo₂NbAlC₂

c) Mo₂ScAlC₂

Fig 4S. Phonon dispersion curves, total and partial vibrational density of states for **a**) Mo₂HfAlC₂ **b**) Mo₂NbAlC₂ **c**) Mo₂ScAlC₂ **d**) Mo₂TaAlC₂ **e**) Mo₂TiAlC₂ **f**) Mo₂VAlC₂ **g**) Mo₂YAlC₂ **h**) Mo₂ZrAlC₂ **i**) Nb₂HfAlC₂ **j**) Nb₂ScAlC₂ **k**) Nb₂TaAlC₂ **l**) Nb₂TiAlC₂ **m**) Nb₂YAlC₂ **n**) Nb₂ZrAlC₂ **o**) W₂HfAlC₂ **p**) W₂NbAlC₂ **q**) W₂ScAlC₂ **r**) W₂TaAlC₂ **s**) W₂TiAlC₂ **t**) W₂VAlC₂ **u**) W₂YAlC₂ **v**) W₂ZrAlC₂ (Phonon dispersion curves are weighted by phonon linewidth (γ_{qv})).

h) Mo₂ZrAlC₂

Fig 5S. Eliashberg spectral function $\alpha^2 F(\omega)$ for a) Mo₂HfAlC₂ b) Mo₂NbAlC₂ c) Mo₂ScAlC₂ d) Mo₂TaAlC₂ e) Mo₂TiAlC₂ f) Mo₂VAlC₂ g) Mo₂YAlC₂ h) Mo₂ZrAlC₂ i) Nb₂HfAlC₂ j) Nb₂ScAlC₂ k) Nb₂TaAlC₂ l) Nb₂TiAlC₂ m) Nb₂YAlC₂ n) Nb₂ZrAlC₂ o) W₂HfAlC₂ p) W₂NbAlC₂ q) W₂ScAlC₂ r) W₂TaAlC₂ s) W₂TiAlC₂ t) W₂VAlC₂ u) W₂YAlC₂ v) W₂ZrAlC₂.

We conducted a series of ab initio molecular dynamics (AIMD) simulations, with the results presented in Figures 6S and 7S below. The calculations were carried out using a $2 \times 2 \times 1$ supercell, and the structures were subjected to a temperature of 300 K for a duration of 5 picoseconds. Analysis of the simulation trajectories suggests the potential coexistence of an additional stable structure exhibiting Cc symmetry (group No. 9), which arises from a slight distortion of the hexagonal M' layer into parallel zigzag-like chains during the AIMD simulations. Notably, our simulations indicate that such a phase exists in the experimentally synthesized Mo₂VAIC₂. To assess the relative stability of the initial (P6₃/mmc) structure and the newly identified phase, we performed high-precision optimizations on both configurations. Following the optimization, we compared their total energies, revealing that the initial structure is approximately - 0.005 eV/atom more stable than the newly discovered phase, as detailed in Table 4S. Such small energy difference suggests that the investigated o-MAX phases may possess two local minima that could be realized under specific experimental conditions.

Material	Total energy (eV) per atom for new optimized structure E1	Total energy (eV) per atom for original structure E ₂	E ₂ -E ₁ (eV/atom)
W ₂ VAIC ₂	-1114.2019348	-1114.2092611	-0.0073263
W ₂ TaAlC ₂	-1102.3201313	-1102.3229161	-0.0027848
W2NbAlC2	-1051.8351656	-1051.839192	-0.0040264
Mo ₂ NbAlC ₂	-968.4465329	-968.49461865	-0.04808575

Table4S. Compare energy of compounds in the two competitive phases.

Fig 6S. ab initio molecular dynamics simulations for 6 of high- T_c compounds. According to Table 4S after optimization the original structure is more stable. It is worth noting that Mo₂ScAlC₂, Mo₂VAlC₂, and Mo₂TiAlC₂ have been experimentally synthesized.

Fig 7S. The relaxed structure after Molecular Dynamic (MD) simulation.

The POSCAR file of the aforementioned competitive phase is placed below.

POSCAR File – o-M	AX phase	
1.0		
5.7901010079	0.0450632755	-0.0042953188
-2.8556289743	4.9470496107	0.0081578174
-0.0104038889	0.0176582096	19.6674049400
W V Al C		
16 8 8 16		
Direct		
0.150363609	0.323806494	0.361136973
0.154054075	0.823943794	0.369243205
0.650656939	0.328727841	0.364083648
0.651909113	0.828518093	0.363982737
0.347618669	0.176387906	0.864010453
0.348928779	0.677950621	0.864064932
0.849147618	0.173467040	0.861286342
0.845439434	0.669982851	0.869399548
0.347196609	0.172950357	0.636771679
0.351673067	0.681993127	0.635866582
0.847747564	0.176422745	0.639736772
0.851625502	0.682630718	0.633023143
0.151413202	0.328077972	0.139731422
0.147619247	0.830406368	0.133084401
0 647478461	0 329835981	0 135714456
0.652064323	0.825211465	0 136716112
0.011261389	0.003303064	0.980056047
0.997071147	0.489069551	0.017183051
0.496078610	0.001043542	0.019759573
0.515027463	0.502324700	0.979226410
0.988500297	0.902324700	0.479914129
0.001070237	0.992294571	0.517178178
0.001770237	0.986583471	0.470147017
0.404129012	0.50/6003/6	0.510764781
0.000560702	0.004009340	0.251127770
0.986508785	0.9624/1226	0.250107044
0.300312333	0.001627170	0.230107344
0.4//110623	0.33103/1/0	0.249749944
0.4941/3380	0.498828709	0.250491142
0.010450694	0.995256297	0.750201821
0.012243110	0.320202399	0.750201821
0.505490899	0.004//3200	0.730337184
0.322137040	0.314320433	0.749840973
0.101080280	0.352150291	0.932917833
0.184903264	0.83/583363	0.93/945485
0.6/3255920	0.30/906836	0.938813031
0.648449361	0.8/6650214	0.939358175
0.351581901	0.229029909	0.439405292
0.326119483	0.633887589	0.438/04014
0.838768542	0.191197962	0.432922453
0.815277815	0.653039813	0.43/865/64
0.320860237	0.180276200	0.062779106
0.339245319	0.644096911	0.065557316
0.839184999	0.153391749	0.067892849
0.819993079	0.663176119	0.060692627
0.160172433	0.313972533	0.567887664
0.179565951	0.842563331	0.560776114
0.659708500	0.304140955	0.565505147
0.678242743	0.859116971	0.562803328

To illustrate the feasibility of the experimental synthesis of o-MAX phases, we have conducted a comparison of the formation energies of our high T_c o-MAX phases with their potential competitive binary phases, as detailed below. We have also done the same analysis for the experimentally synthesized structures. The results are summarized in Table 4S.

$$\Delta H_{W_2VAlC_2}$$

$$\Delta H_1 = E_{W_2VAlC_2} - \left(\frac{1}{11}E_{VAl_3} + \frac{5}{11}E_{V_2C} + E_{W_2C} + \frac{2}{11}E_{Al_4C_3}\right)$$

$$\Delta H_2 = E_{W_2VAlC_2} - \left(\frac{1}{17}E_{WAl_3} + \frac{1}{2}E_{V_2C} + \frac{33}{34}E_{W_2C} + \frac{3}{17}E_{Al_4C_3}\right)$$

$$\Delta H_3 = E_{W_2VAlC_2} - \left(\frac{7}{37}E_{VAl_3} + \frac{5}{37}E_{V_6C_5} + E_{W_2C} + \frac{4}{37}E_{Al_4C_3}\right)$$

$$\Delta H_4 = E_{W_2VAlC_2} - \left(\frac{2}{13}E_{WAl_5} + \frac{2}{13}E_{V_2C} + \frac{24}{13}E_{WC} + \frac{3}{13}E_{V_3Al}\right)$$

$$\Delta H_5 = E_{W_2VAlC_2} - \left(\frac{7}{51}E_{WAl_5} + \frac{17}{102}E_{V_6C_5} + \frac{95}{102}E_{W_2C} + \frac{4}{51}E_{Al_4C_3}\right)$$

$$\Delta H_6 = E_{W_2VAlC_2} - \left(\frac{10}{69}E_{WAl_5} + \frac{2}{69}E_{V_6C_5} + \frac{128}{69}E_{WC} + \frac{19}{69}E_{V_3Al}\right)$$

$\Delta H_{W_2TaAlC_2}$

$$\begin{split} \Delta \mathbf{H}_{1} &= \mathbf{E}_{W_{2}TaAlC_{2}} - \left(\frac{1}{7}\mathbf{E}_{Ta_{2}Al} + \frac{5}{14}\mathbf{E}_{Ta_{2}C} + \mathbf{E}_{W_{2}C} + \frac{3}{14}\mathbf{E}_{Al_{4}C_{3}}\right) \\ \Delta \mathbf{H}_{2} &= \mathbf{E}_{W_{2}TaAlC_{2}} - \left(\frac{1}{8}\mathbf{E}_{Ta_{2}C} + \frac{3}{8}\mathbf{E}_{Ta_{2}Al} + \frac{15}{8}\mathbf{E}_{WC} + \frac{1}{8}\mathbf{E}_{WAl_{5}}\right) \\ \Delta \mathbf{H}_{3} &= \mathbf{E}_{W_{2}TaAlC_{2}} - \left(\frac{5}{11}\mathbf{E}_{TaC} + \frac{3}{11}\mathbf{E}_{Ta_{2}Al} + \mathbf{E}_{W_{2}C} + \frac{2}{11}\mathbf{E}_{Al_{4}C_{3}}\right) \\ \Delta \mathbf{H}_{4} &= \mathbf{E}_{W_{2}TaAlC_{2}} - \left(\frac{10}{13}\mathbf{E}_{TaC} + \frac{3}{13}\mathbf{E}_{TaAl_{3}} + \mathbf{E}_{W_{2}C} + \frac{1}{13}\mathbf{E}_{Al_{4}C_{3}}\right) \\ \Delta \mathbf{H}_{5} &= \mathbf{E}_{W_{2}TaAlC_{2}} - \left(\frac{1}{2}\mathbf{E}_{Ta_{2}C} + \frac{1}{17}\mathbf{E}_{WAl_{5}} + \frac{33}{34}\mathbf{E}_{W_{2}C} + \frac{3}{17}\mathbf{E}_{Al_{4}C_{3}}\right) \\ \Delta \mathbf{H}_{6} &= \mathbf{E}_{W_{2}TaAlC_{2}} - \left(\mathbf{E}_{TaC} + \frac{3}{17}\mathbf{E}_{WAl_{5}} + \frac{31}{34}\mathbf{E}_{W_{2}C} + \frac{1}{34}\mathbf{E}_{Al_{4}C_{3}}\right) \end{split}$$

$$\Delta H_{W_2NbAlC_2}$$

$$\Delta H_1 = E_{W_2NbAlC_2} - \left(\frac{1}{7}E_{Nb_2Al} + \frac{5}{14}E_{Nb_2C} + E_{W_2C} + \frac{3}{14}E_{Al_4C_3}\right)$$

$$\Delta H_2 = E_{W_2NbAlC_2} - \left(\frac{1}{2}E_{Nb_2C} + \frac{1}{17}E_{WAl_5} + \frac{33}{34}E_{W_2C} + \frac{3}{17}E_{Al_4C_3}\right)$$

$$\Delta H_3 = E_{W_2NbAlC_2} - \left(\frac{5}{11}E_{Nb_2C} + \frac{1}{11}E_{NbAl_3} + E_{W_2C} + \frac{2}{11}E_{Al_4C_3}\right)$$

$$\Delta H_4 = E_{W_2NbAlC_2} - \left(\frac{5}{37}E_{Nb_6C_5} + \frac{7}{37}E_{NbAl_3} + E_{W_2C} + \frac{4}{37}E_{Al_4C_3}\right)$$

$$\Delta H_5 = E_{W_2NbAlC_2} - \left(\frac{1}{44}E_{Nb_6C_5} + \frac{19}{44}E_{Nb_2Al} + \frac{5}{44}E_{WAl_5} + \frac{83}{44}E_{WC}\right)$$

$$\Delta H_6 = E_{W_2NbAlC_2} - \left(\frac{1}{3}E_{Nb_2C} + \frac{1}{3}E_{W_2C} + \frac{1}{3}E_{NbAl_3} + \frac{4}{3}E_{WC}\right)$$

$\Delta H_{Mo_2VAlC_2}$

 $\Delta \mathbf{H}_{1} = \mathbf{E}_{Mo_{2}VAlC_{2}} - \left(\frac{1}{11}\mathbf{E}_{VAl_{3}} + \frac{5}{11}\mathbf{E}_{V_{2}C} + \mathbf{E}_{Mo_{2}C} + \frac{2}{11}\mathbf{E}_{Al_{4}C_{3}}\right)$ $\Delta \mathbf{H}_{2} = \mathbf{E}_{Mo_{2}VAlC_{2}} - \left(\frac{1}{13}\mathbf{E}_{V_{6}C_{5}} + \frac{7}{39}\mathbf{E}_{V_{3}Al} + \mathbf{E}_{Mo_{2}C} + \frac{8}{39}\mathbf{E}_{Al_{4}C_{3}}\right)$ $\Delta \mathbf{H}_{3} = \mathbf{E}_{Mo_{2}VAlC_{2}} - \left(\frac{5}{37}\mathbf{E}_{V_{6}C_{5}} + \frac{5}{11}\mathbf{E}_{VAl_{3}} + \mathbf{E}_{Mo_{2}C} + \frac{4}{37}\mathbf{E}_{Al_{4}C_{3}}\right)$ $\Delta \mathbf{H}_{4} = \mathbf{E}_{Mo_{2}VAlC_{2}} - \left(\frac{1}{9}\mathbf{E}_{V_{3}Al} + \frac{1}{3}\mathbf{E}_{V_{2}C} + \mathbf{E}_{Mo_{2}C} + \frac{2}{9}\mathbf{E}_{Al_{4}C_{3}}\right)$ $\Delta \mathbf{H}_{5} = \mathbf{E}_{Mo_{2}VAlC_{2}} - \left(\frac{1}{2}\mathbf{E}_{V_{2}C} + \frac{1}{9}\mathbf{E}_{Mo_{3}Al} + \frac{15}{18}\mathbf{E}_{Mo_{2}C} + \frac{2}{9}\mathbf{E}_{Al_{4}C_{3}}\right)$ $\Delta \mathbf{H}_{6} = \mathbf{E}_{Mo_{2}VAlC_{2}} - \left(\frac{1}{6}\mathbf{E}_{V_{6}C_{5}} + \frac{7}{27}\mathbf{E}_{Mo_{3}Al} + \frac{33}{54}\mathbf{E}_{Mo_{2}C} + \frac{5}{27}\mathbf{E}_{Al_{4}C_{3}}\right)$

$\Delta H_{Mo_2NbAlC_2}$

$$\begin{split} \Delta \mathbf{H_1} &= \mathbf{E_{Mo_2NbAlC_2}} - \left(\frac{1}{7}\mathbf{E_{Nb_2Al}} + \frac{5}{14}\mathbf{E_{Nb_2C}} + \mathbf{E_{Mo_2C}} + \frac{3}{14}\mathbf{E_{Al_4C_3}}\right) \\ \Delta \mathbf{H_2} &= \mathbf{E_{Mo_2NbAlC_2}} - \left(\frac{5}{58}\mathbf{E_{Nb_6C_5}} + \frac{14}{58}\mathbf{E_{Nb_2Al}} + \mathbf{E_{Mo_2C}} + \frac{11}{58}\mathbf{E_{Al_4C_3}}\right) \\ \Delta \mathbf{H_3} &= \mathbf{E_{Mo_2NbAlC_2}} - \left(\frac{1}{20}\mathbf{E_{Nb_6C_5}} + \frac{7}{10}\mathbf{E_{Nb}} + \mathbf{E_{Mo_2C}} + \frac{1}{4}\mathbf{E_{Al_4C_3}}\right) \\ \Delta \mathbf{H_4} &= \mathbf{E_{Mo_2NbAlC_2}} - \left(\frac{1}{6}\mathbf{E_{Nb_6C_5}} + \frac{33}{54}\mathbf{E_{Mo_2C}} + \frac{7}{27}\mathbf{E_{Mo_3Al}} + \frac{5}{27}\mathbf{E_{Al_4C_3}}\right) \\ \Delta \mathbf{H_5} &= \mathbf{E_{Mo_2NbAlC_2}} - \left(\frac{1}{2}\mathbf{E_{Nb_2C}} + \frac{15}{18}\mathbf{E_{Mo_2C}} + \frac{1}{9}\mathbf{E_{Mo_3Al}} + \frac{2}{9}\mathbf{E_{Al_4C_3}}\right) \\ \Delta \mathbf{H_6} &= \mathbf{E_{Mo_2NbAlC_2}} - \left(\frac{5}{11}\mathbf{E_{Nb_2C}} + \frac{1}{11}\mathbf{E_{NbAl_3}} + \mathbf{E_{Mo_2C}} + \frac{2}{11}\mathbf{E_{Al_4C_3}}\right) \end{split}$$

$\Delta H_{Mo_2ScAlC_2}$

$$\begin{split} \Delta \mathbf{H}_{1} &= \mathbf{E}_{\text{Mo}_{2}\text{ScAlC}_{2}} - \left(\frac{1}{7}\mathbf{E}_{\text{Sc}_{2}\text{Al}} + \frac{5}{14}\mathbf{E}_{\text{Sc}_{2}\text{C}} + \mathbf{E}_{\text{Mo}_{2}\text{C}} + \frac{3}{14}\mathbf{E}_{\text{Al}_{4}\text{C}_{3}}\right) \\ \Delta \mathbf{H}_{2} &= \mathbf{E}_{\text{Mo}_{2}\text{ScAlC}_{2}} - \left(\frac{1}{2}\mathbf{E}_{\text{Sc}_{2}\text{C}} + \frac{2}{9}\mathbf{E}_{\text{Mo}_{3}\text{Al}} + \frac{15}{18}\mathbf{E}_{\text{Mo}_{2}\text{C}} + \frac{2}{9}\mathbf{E}_{\text{Al}_{4}\text{C}_{3}}\right) \\ \Delta \mathbf{H}_{3} &= \mathbf{E}_{\text{Mo}_{2}\text{ScAlC}_{2}} - \left(\frac{1}{4}\mathbf{E}_{\text{Sc}_{4}\text{C}_{3}} + \frac{2}{9}\mathbf{E}_{\text{Mo}_{3}\text{Al}} + \frac{2}{3}\mathbf{E}_{\text{Mo}_{2}\text{C}} + \frac{7}{36}\mathbf{E}_{\text{Al}_{4}\text{C}_{3}}\right) \\ \Delta \mathbf{H}_{4} &= \mathbf{E}_{\text{Mo}_{2}\text{ScAlC}_{2}} - \left(\frac{1}{6}\mathbf{E}_{\text{Sc}_{4}\text{C}_{3}} + \mathbf{E}_{\text{Mo}_{2}\text{C}} + \frac{1}{3}\mathbf{E}_{\text{ScAl}} + \frac{1}{6}\mathbf{E}_{\text{Al}_{4}\text{C}_{3}}\right) \\ \Delta \mathbf{H}_{5} &= \mathbf{E}_{\text{Mo}_{2}\text{ScAlC}_{2}} - \left(\frac{7}{36}\mathbf{E}_{\text{Sc}_{4}\text{C}_{3}} + \mathbf{E}_{\text{Mo}_{2}\text{C}} + \frac{2}{9}\mathbf{E}_{\text{ScAl}} + \frac{5}{36}\mathbf{E}_{\text{Al}_{4}\text{C}_{3}}\right) \\ \Delta \mathbf{H}_{6} &= \mathbf{E}_{\text{Mo}_{2}\text{ScAlC}_{2}} - \left(\frac{5}{24}\mathbf{E}_{\text{Sc}_{4}\text{C}_{3}} + \mathbf{E}_{\text{Mo}_{2}\text{C}} + \frac{1}{6}\mathbf{E}_{\text{ScAl}_{3}} + \frac{1}{8}\mathbf{E}_{\text{Al}_{4}\text{C}_{3}}\right) \end{split}$$

$\Delta H_{Mo_2TiAlC_2}$ $\Delta H_1 = E_{Mo_2TiAlC_2} - \left(\frac{1}{8}E_{TiAl_2} + \frac{7}{16}E_{Ti_2C} + E_{Mo_2C} + \frac{3}{16}E_{Al_4C_3}\right)$ $\Delta H_2 = E_{Mo_2TiAlC_2} - \left(\frac{5}{46}E_{Ti_8C_5} + \frac{3}{23}E_{TiAl_3} + E_{Mo_2C} + \frac{7}{46}E_{Al_4C_3}\right)$ $\Delta H_3 = E_{Mo_2TiAlC_2} - \left(\frac{1}{2}E_{Ti_2C} + \frac{1}{9}E_{Mo_3Al} + \frac{15}{18}E_{Mo_2C} + \frac{2}{9}E_{Al_4C_3}\right)$ $\Delta H_4 = E_{Mo_2TiAlC_2} - \left(E_{TiC} + \frac{1}{3}E_{Mo_3Al} + \frac{1}{2}E_{Mo_2C} + \frac{1}{6}E_{Al_4C_3}\right)$

$$\Delta \mathbf{H}_{5} = \mathbf{E}_{Mo_{2}TiAlC_{2}} - \left(\frac{10}{13}\mathbf{E}_{TiC} + \frac{3}{13}\mathbf{E}_{TiAl_{3}} + \mathbf{E}_{Mo_{2}C} + \frac{1}{13}\mathbf{E}_{Al_{4}C_{3}}\right)$$

$$\Delta \mathbf{H}_{6} = \mathbf{E}_{Mo_{2}TiAlC_{2}} - \left(\frac{4}{7}\mathbf{E}_{TiC} + \frac{3}{7}\mathbf{E}_{TiAl} + \mathbf{E}_{Mo_{2}C} + \frac{1}{7}\mathbf{E}_{Al_{4}C_{3}}\right)$$

These results in Table 5S indicate that the calculated relative formation energies of these compounds are either negative or very small positive. According to the recent computational screening on the inorganic crystal structure database (ICSD), 80% of experimentally synthesized compounds possess instability of Δ H less than 0.036 eV per atom [G. Bergerhoff, R. Hundt and R. Sievers, J. Chem. Inf. Comput. Sci., 1983, 23, 66–69]. Assuming this value as a stability criterion (i.e., Δ H < 0.036 eV per atom), it is expected that o-MAX phases with high T_c have possibility for the experimental synthesis. We have added the above discussion to the manuscript and the Table to the Supplementary information.

Table 5S. The relative formation energies of the o-MAX phases have been calculated and compared to their corresponding binary phases. The binary phases were sourced from the database of the Materials Project. The asterisk (*) denotes that the o-MAX phases were synthesized through experimental methods.

Materials	Available experimental phases	ΔH (eV/atom)			
W ₂ VAlC ₂	VAl ₃ , V ₂ C, W ₂ C, Al ₄ C ₃ , V ₆ C ₅ , V ₃ Al, WC, WAl ₅ , V ₆ C ₅	$\Delta H_1 = -0.01 \ \Delta H_2 = -0.015$ $\Delta H_3 = 0.022 \ \Delta H_4 = -0.009$ $\Delta H_5 = 0.036 \ \Delta H_6 = -0.013$			
W ₂ TaAlC ₂	Ta ₂ Al, Ta ₂ C, TaC, W ₂ C, Al ₄ C ₃ , WC, WAl ₅	$\Delta H_1 = -0.043 \Delta H_2 = -0.033$ $\Delta H_3 = -0.062 \Delta H_4 = 0.007$ $\Delta H_5 = -0.023 \Delta H_6 = 0.030$			
W ₂ NbAlC ₂	Nb2Al, Nb2C, W2C, Al4C3, WC, WAl5, Nb6C5	$\Delta H_1 = -0.04 \Delta H_2 = -0.033$ $\Delta H_3 = -0.027 \Delta H_4 = 0.029$ $\Delta H_5 = -0.008 \Delta H_6 = 0.042$			
Mo ₂ VAlC ₂	VAl ₃ , V ₂ C, Mo ₂ C, Al ₄ C ₃ , V ₆ C ₅ , V ₃ Al, Mo ₃ Al, V ₆ C ₅	$\Delta H_1 = -0.058 \Delta H_2 = -0.102$ $\Delta H_3 = -0.034 \Delta H_4 = -0.105$ $\Delta H_5 = -0.070 \Delta H_6 = -0.016$			
*Mo2NbAlC2	Nb2Al, Nb2C, Mo2C, Al4C3, Mo3Al, Nb6C5	$\Delta H_1 = -0.110 \Delta H_2 = -0.091$ $\Delta H_3 = -0.162 \Delta H_4 = -0.022$ $\Delta H_5 = -0.087 \Delta H_6 = -0.083$			
*Mo ₂ ScAlC ₂	Sc ₂ Al, Sc ₂ C, Mo ₂ C, Al ₄ C ₃ , Sc ₄ C ₃ , Mo ₃ Al, ScAl, ScAl ₂ , ScAl ₃	$\Delta H_1 = -0.194 \Delta H_2 = -0.181$ $\Delta H_3 = -0.142 \Delta H_4 = -0.156$ $\Delta H_5 = -0.139 \Delta H_6 = -0.135$			
*Mo ₂ TiAlC ₂	TiAl ₂ , Ti ₂ C, Mo ₂ C, Al ₄ C ₃ , TiC, TiAl, TiAl ₃ , Ti ₈ C ₅ , Mo ₃ Al	$\Delta H_1 = -0.245 \ \Delta H_2 = -0.174 \Delta H_3 = -0.181 \ \Delta H_4 = -0.211 \Delta H_5 = -0.095 \ \Delta H_6 = -0.124$			