Electronic Supplementary Information (ESI)

High throughput screening of Ohmic contact in 2D Metal-Semiconductor van der Waals heterojunctions

Fathima IS[†], Raihan Ahammed[†], Abir De Sarkar*

Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab-140306, India

*E-mail: abir@inst.ac.in; abirdesarkar@gmail.com

†Authors contributed equally

FIG S1 (a) Band alignment (PBE) of monolayers with serial numbers 1-60

FIG S1 (b) Band alignment (PBE) of monolayers with serial numbers 61 - 120

FIG S1 (c) Band alignment (PBE) of monolayers with serial numbers 121-180

FIG S1 (d) Band alignment (PBE) of monolayers with serial numbers 181-240

FIG S1 (e) Band alignment (PBE) of monolayers with serial numbers 241 - 300

FIG S1 (f) Band alignment (PBE) of monolayers with serial numbers 301 - 360

FIG S1 (g) Band alignment (PBE) of monolayers with serial numbers 361-420

FIG S1 (h) Band alignment (PBE) of monolayers with serial numbers 421-480

FIG S1 (i) Band alignment (PBE) of monolayers with serial numbers 481-540

FIG S1 (j) Band alignment (PBE) of monolayers with serial numbers 541-600

FIG S1 (k) Band alignment (PBE) of monolayers with serial numbers 601 - 660

FIG S1 (I) Band alignment (PBE) of monolayers with serial numbers 661 - 720

FIG S1 (m) Band alignment (PBE) of monolayers with serial numbers 721 - 780

FIG S1 (n) Band alignment (PBE) of monolayers with serial numbers 781 - 840

FIG S1 (o) Band alignment (PBE) of monolayers with serial numbers 841 - 900

FIG S1 (p) Band alignment (PBE) of monolayers with serial numbers 901 - 960

FIG S1 (q) Band alignment (PBE) of monolayers with serial numbers 961 - 1020

FIG S1 (r) Band alignment (PBE) of monolayers with serial numbers 1021 - 1080

FIG S1 (s) Band alignment (PBE) of monolayers with serial numbers 1081-1140

FIG S1 (t) Band alignment (PBE) of monolayers with serial numbers 1141 – 1200

FIG S1 (u) Band alignment (PBE) of monolayers with serial numbers 1201 - 1260

FIG S1 (u) Band alignment (PBE) of monolayers with serial numbers 1261 - 1320

Table	– S1 List of
analyz	ed monolayers
along	with their
corres	ponding serial
numbe	ers
Serial	Material
No.	
1	$Mn_2P_2Se_6$
2	Rh ₂ Se ₂
3	Ru_2Se_4
4	ScI ₂
5	NiI ₂
6	Cu ₂ Br ₆
7	ScCl ₂
8	$Mn_2P_2S_6$
9	$Rh_2P_2Te_6$
10	Ti ₂ Te ₂
11	Bi ₂ MnTe ₄
12	Bi ₂ Se ₂ Te
13	Os_2S_4
14	Re ₂ I ₄
15	Pb ₂ Te ₄
16	Os ₂ Te ₄
17	HgSe
18	$Ti_2Zr_2Te_8$
19	$Pt_2Br_2N_2$
20	F_2Ge_2
21	VSeTe
22	$Cr_2Cu_2O_8$
23	Bi ₂ O ₂
24	Bi ₂ SeTe ₂
25	Ti ₂ Cl ₆
26	Pb ₂ F ₂
27	Ir ₂ O ₂
28	$Mn_2Br_2S_4Sb_2$
29	PbTe ₂
30	$Cr_2Ge_2Te_6$
31	$Fe_2P_2Te_6$
32	HfTe ₂
33	Zr_2S_2
34	Mo_2S_4
35	Hf_2S_2
36	Ir_2Se_2
37	Ca ₂ I ₂
38	Hg ₂ Cl ₂
39	Re ₂ I ₆
40	FeF ₂
41	Re ₂ Br ₆
42	Bi ₂ Cu ₂ S ₄
43	Zn ₄ Cl ₄ O ₄
44	CdO ₂
45	Re2I6
46	YI ₂

47	HfSeTe
48	Hf ₃ ZrTe ₈
49	Os_2Se_4
50	FeI ₂
51	PtBr ₂
52	$Hg_2Pt_4Se_6$
53	HgTe
54	Ti_2I_4
55	Ru_2Te_4
56	ScBr ₂
57	Bi ₂ STe ₂
58	Hf_2Te_{10}
59	Bi_2Se_2
60	Ag_2O_2
61	$Hf_2Zr_2Te_8$
62	CoCl ₂
63	Os_2O_4
64	Ag ₂ ReI ₆
65	Ga ₂ NiS ₄
66	Pb_2S_2
67	Ti ₂ Br ₆
68	Au ₂ O ₂
69	CoBr ₂
70	$Mn_2Cl_2N_2$
71	$Cr_2Cl_2Se_2$
72	Co ₄ Br ₄ O ₄
73	MoOTe
74	$Cr_2Br_2Se_2$
75	$Ta_2P_2Te_6$
76	Cu ₂ ReI ₆
77	\mathbf{Sb}_4
78	Au_2ReF_6
79	$Cu_2Sb_2Se_4$
80	TiZr ₃ Te ₈
81	Zr_2Te_{10}
82	Pb ₂ O ₂
83	Hg_2Br_2
84	Nb ₃ I ₈
85	CuV ₂ O ₆
86	PdBr ₂
87	W_2Br_6
88	$Ru_2P_2Te_6$
89	WSTe
90	MoSTe
91	$Cr_2Ta_4O_{12}$
92	Nb ₃ Cl ₈
93	Zr_2Te_2
94	ZrSTe
95	Au ₂ Cl ₆
96	$T_{12}I_6$
97	$Cu_2C_4H_4O_8$
98	VTe ₂
99	HfZr ₃ Te ₈

100	V_2S_2
101	$Ir_2I_2S_2$
102	Au ₂ MoTe ₄
103	Ti ₂ Te ₂
104	Rh ₂ Cl ₆
105	AsIS
106	Bi ₂ OTe ₂
107	W_2I_6
108	V_2Te_2
109	$Ir_2P_2Te_6$
110	V_2Te_2
111	PdSe ₂
112	Hg_2O_4
113	Sn_2H_2
114	Re_2S_2
115	OsCl ₂
116	Sb_2Se_2
117	Pb ₂ O ₂
118	Ru_2Se_6
119	$Y_3N_2O_2$
120	VSe ₂
121	MnH ₂ O ₂
122	$Tl_2I_2S_2$
123	V_2Se_2
124	ZrTe ₂
125	CrSTe
126	ZrSeTe
127	FeO ₂
128	OsO ₂
129	$Mn_2Br_2Sb_2Se_4$
130	Ir_2Cl_6
131	Ag_2Cl_6
132	$Pb_2 1e_6$
133	$\mathbf{K}_2 \mathbf{P} \mathbf{t}_2 \mathbf{C} \mathbf{I}_6 \mathbf{N}_2$
134	Bl2Se3
133	Rll_2Dl_6
130	Cr.Si.To
137	U12S12166
130	RuBr-
140	FeaTer
140	GeoS4
142	$7r_2I_2N_2$
142	GapPaTec
143	ScaTea
144	Nh ₂ Br ₂
146	TapPaSec
147	TlaTea
148	Ti2S6
149	PbSe ₂
150	$Ir_2Br_2O_2$
151	Ir_2S_2
152	PbSb ₂ Te ₄

153	CoF ₂
154	HgO
155	PtTe ₂
156	V_4O_8
157	Ir ₂ Se ₂
158	Bi_2S_2
159	$Li_2V_4O_{10}$
160	MnZrCl ₆
161	$Tl_2I_2O_2$
162	Cu ₄ Cl ₄ O ₄
163	Ag ₂ MoTe ₄
164	CrMoF ₆
165	BSb
166	Sn_2F_2
167	CoC ₄ Cl ₂ H ₄ N ₂
168	Hf ₃ N ₂ O ₂
169	Ti ₂ Cl ₄
170	Co ₄ S ₈
171	Au ₂ WTe ₄
172	CuLi ₂ O ₂
173	Ti ₂ CO ₂
174	$Ru_2P_2S_6$
175	AsITe
176	Cr ₂ I ₂ S ₂
177	Bi2Te2
178	ZrSe2
179	Sh ₂ Te ₃
180	Tl ₂ Te ₂
181	Ir ₂ Br ₂ S ₂
182	YBr ₂
183	BilTe
184	Bi ₂ Se ₂
185	CoBr ₂
186	AgVP ₂ Se ₆
187	CoCl2
188	FeCla
189	Bi2SSe2
190	$Pt_2Cl_2N_2$
191	Ir ₂ Cl ₂ S ₂
192	Mn ₂ Cl ₂ S ₄ Sh ₂
193	Cu ₂ S ₄ Sb ₂
194	S ₂ Sb ₂
195	Hg ₂ P ₂ Te ₆
196	$C_{02}H_2S_4$
197	ScH ₂
198	$Y_2Cl_2O_4$
199	Au_2Br_2
200	K ₂ C ₄
201	YCl ₂
202	TiTe2
202	Fe ₂ Cl ₆
203	Nh ₄ S ₁₂
205	

206	$Zr_3C_2O_2$
207	$Cu_4F_4H_4O_4$
208	In_2O_2
209	CoZrBr ₆
210	Si ₂ Te ₂
211	SnTe ₂
212	Co ₂ H ₂ O ₄
213	Bi ₂ P ₂ Te ₆
214	$C_0C_4H_8N_2O_4$
215	$Zr_2P_2Se_6$
216	C_6N_2
217	Sc2Se2
218	Sb ₂ Se ₂
210	$\frac{36256162}{7r_2N_2O_2}$
220	BilS
220	CuCLHO
221	DtCl ₂
222	NiZrE.
223	$7r_{0}Se_{0}$
224	$Z_{12}Se_6$
223	III_2S_4
220	$B1_2S_2Se$
227	CdGaInS ₄
228	Bille
229	HIH_2O_2
230	Rh ₂ Cl ₄
231	Sc_2S_2
232	$Pt_2P_2Se_6$
233	CrO_2
234	$Nb_4Ge_2Te_8$
235	$HI_3C_2O_2$
230	PD_2CI_2
237	
238	PD_2S_2
239	
240	$SC_2CH_2O_2$
241	$Cu_2O_6SI_2$
242	
243	CroDoSo.
244	$C_{12}\Gamma_{2}SC_{6}$
243	$\operatorname{SH}_2\Gamma_2\Gamma \mathfrak{e}_6$
240	
247	DIISC Dh Ta
248	$rv_2 le_2$
249	In_2Se_3
250	Cl_2SD_2
251	SD_2Se_2
252	
253	$Cr_3 W Ie_8$
254	Br_2SD_2
255	$Ir_2CI_2O_2$
256	Pb_2le_2
257	AsiSe
258	Cu_2Se_2

259	Tl_2Se_2
260	Cu ₄ O ₁₂ Te ₂
261	Ni ₂ As ₂ O ₇
262	Zr_2Te_2
263	CrTe ₂
264	$Cr_2Br_2S_2$
265	$Y_2CH_2O_2$
266	Nb ₄ O ₈
267	$Cr_2Cl_2S_2$
268	Bi ₂ OSe ₂
269	PdCl ₂
270	RuCl ₂
271	SSb_2Se_2
272	$Co_2F_2O_4$
273	Cr ₃ MoTe ₈
274	Se ₂ Si
275	Cu ₂ ReCl ₆
276	$Hf_2P_2Se_6$
277	Bi_2S_3
278	SSb ₂ Te ₂
279	InSb
280	Sn_2Se_4
281	$Co_2H_4O_8Se_2$
282	Rb_2C_4
283	Ag_2Te_2
284	Pb_2Se_2
285	OSb_2Te_2
286	Au_2Br_2
287	In_2Te_4
288	W_2Cl_6
289	CuInP ₂ Se ₆
290	Tl_2Se_2
291	$Cr_2W_2Te_8$
292	Ag_2F_2
293	$Cr_2Br_2O_2$
294	VI ₂ O
295	HgO ₂
296	TiSSe
297	RuH ₂ O ₂
298	Mo ₂ Cl ₆
299	$Nb_2P_2S_6$
300	$P_2Sb_2Te_6$
301	OSb_2Se_2
302	CoRe ₂ O ₈
303	Nb ₄ Si ₂ Te ₈
304	$Zr_2Ge_2Te_8$
305	TiSe ₂
306	Co ₂ I ₆
307	BiBrTe
308	Os ₂ S ₄
309	BiClTe
310	WOTe
311	CrW ₃ Te ₈

312	Zn_2Te_2
313	$Hf_2I_2N_2$
314	Ir ₄ Te ₈
315	TaO ₂
316	Ag_2F_2
317	Cr ₂ Mo ₂ Te ₈
318	Bi ₂
319	PdSe ₂
320	ScSe ₂
321	Ag ₂ ReBr ₆
322	GeSe ₂
323	Nb ₃ I ₇ Te
324	Hf ₂ Ge ₂ Te ₈
325	Bi ₂ OS ₂
326	Os ₂ Se ₄
327	CrSeTe
328	Sb ₂ Se ₂ Te
329	Fe_2Se_4
330	Pb_2Se_6
331	Ti ₃ ZrSe ₈
332	Zr_2Br_4
333	Ta ₄ O ₈
334	Rh ₄ Se ₈
335	NiS ₂
336	I ₂ Sb ₂
337	HfTi ₃ Se ₈
338	Ag ₂ WTe ₄
339	BiBrTe
340	$Zn_2P_2Te_6$
341	Au ₂ MoSe ₄
342	OS ₂ Sb ₂
343	TiI ₂
344	V_2F_8
345	Rh ₄ S ₈
346	S ₂ Sb ₂ Se
347	S ₃ Sb ₂
348	BiClTe
349	$Al_2P_2Se_6$
350	AgSnF ₆
351	Sn ₂ Te ₂
352	$Hg_2P_2Se_6$
353	Ga ₂ Cl ₂ Se ₂
354	BilSe
355	$Cu_2H_4O_{10}Se_2$
356	Zr ₂ Cl ₄
357	ZrSSe
358	InN
359	Au ₂ Te ₂
360	Ti ₂ Cl ₂ N ₂
361	$Ti_2Br_2N_2$
362	Ti ₂ Zr ₂ Se ₈
363	Cu ₂ S ₂
364	Hf ₂ I ₄
	· - ·

365	Ru_2F_8
366	Tl_2S_2
367	HfI_2
368	Cd_2Te_2
369	Bi ₂ Cl ₂ Se ₂
370	$Pd_2O_6Se_2$
371	Mo ₂ Cl ₆
372	Ru_2Te_4
373	Ta ₃ I ₇ Te
374	CrMo ₃ Te ₈
375	$Hf_2Ti_2Se_8$
376	$NiC_2N_2S_2$
377	$Cr_2Cl_2O_2$
378	Cu ₂ WTe ₄
379	Fe_2S_4
380	$Bi_2P_2S_6$
381	In_2I_6
382	$Bi_2Br_2Se_2$
383	MnZrF ₆
384	FeZrI ₆
385	$Pt_4Tl_2Te_6$
386	Al_2FeS_4
387	SnO ₂
388	Ta ₃ I ₇ Se
389	F_2Si_2
390	$Pb_2P_2Te_6$
391	PbS ₂
392	$Nb_4I_2Te_12$
393	Tl_2S_2
394	$Ga_2Ge_2Te_2$
395	Cr ₃ WSe ₈
396	TiBrI
397	In ₂ Si ₂ Te ₆
398	HfSSe
399	$Sc_2P_2Se_6$
400	CrSe ₂
401	Fel ₂
402	Zrl_2
403	$Cu_2Br_2C_4H_4N_2$
404	$B_{12}P_2Se_6$
405	InAs
406	Ir_4S_8
407	Ag ₂ MoSe ₄
408	HfMnF ₆
409	Ga_2Se_2
410	$Sn_2O_6P_2$
411	
412	ngl ₂
415	W_2I_6
414	$B1_2I_2Se_2$
415	
410	
41/	Cr ₃ MoSe ₈

418	$Au_2I_2Te_4$
419	HfBrI
420	Os ₂ Te ₄
421	$Au_2I_2Se_4$
422	ScS_2
423	$Sn_2P_2Se_6$
424	Hf ₃ TiSe ₈
425	Ru_2S_4
426	$W_2H_4O_8$
427	WTe ₂
428	Pb_2Se_4
429	GeS ₂
430	HfBr ₂
431	BiBrSe
432	FeBr ₂
433	TiS ₂
434	$Cu_2I_4O_{12}$
435	CoCl ₂ O ₈
436	$Ga_2Br_2Se_2$
437	ZrSe ₂
438	TiClI
439	Ag_2Se_2
440	MoOSe
441	PbS ₂
442	AsB
443	TiBr ₂
444	$Cr_2W_2Se_8$
445	$Zr_2P_2S_6$
446	Au ₂ WSe ₄
447	SnSe ₂
448	SnS_2
449	VBr ₂ O
450	Nb ₃ Cl ₇ Te
451	HgH_2O_2
452	Tl ₂ I ₆
453	ZrBrI
454	Bi ₂ I ₂
455	BiIS
456	Ag ₂ ReCl ₆
457	Ru_2Se_4
458	FeHfI ₆
459	Au_2I_2
460	CrSSe
461	$ZrTe_2$
462	Pb_2Se_2
463	$Cu_2I_2Se_4$
464	ISSb
465	Al_2I_6
466	Au_2MoS_4
467	S ₂ Sb ₂ Te
468	MoW ₃ Te ₈
469	VCl ₂ O
470	$Cd_2P_2Te_6$

470	ND ₃ Br ₇ S
472	$B_3C_{10}N_3$
473	HfSe ₂
474	HfClI
475	Ge ₂ Te ₂
476	Re ₄ Te ₈
477	CuC ₆ H ₄ N ₆ O ₂
478	$Ge_2P_2Te_6$
479	$Cr_2Mo_2Se_8$
480	Ga ₂ I ₂ Se ₂
481	Ni ₂ S ₄
482	HfZr ₃ Se ₈
483	Ir ₄ Se ₈
484	Cu ₂ F ₄
485	$Sc_2P_2S_6$
486	CoHfF ₆
487	ZrBr ₂
488	Cu ₂ Cl ₂ Se ₄
489	Au ₂ I ₂
490	OsH ₂ O ₂
491	ZrSSe
492	TiBrCl
493	Co ₂ Br ₄ O ₆ Sb ₄
494	HfBrCl
495	GaalaSa
496	Cu ₂ Hg ₂ Cl ₂ Se ₂
497	Pd ₄ Tl ₂ Se ₆
498	As ₄
499	Cu ₂ I ₂ Te ₄
499 500	$Cu_2I_2Te_4$ $Cu_2Br_2Se_4$
499 500 501	$\frac{Cu_2I_2Te_4}{Cu_2Br_2Se_4}$
499 500 501 502	$Cu_2I_2Te_4$ $Cu_2Br_2Se_4$ $Bi_2I_2S_2$ $Cu_2C_4H_3I_2N_2$
499 500 501 502 503	$\begin{array}{c} Cu_{2}I_{2}Te_{4} \\ Cu_{2}Br_{2}Se_{4} \\ Bi_{2}I_{2}S_{2} \\ Cu_{2}C_{6}H_{8}I_{2}N_{2} \\ ISbTe \end{array}$
499 500 501 502 503 504	$\begin{array}{c} Cu_{2}I_{2}Te_{4} \\ Cu_{2}Br_{2}Se_{4} \\ Bi_{2}I_{2}S_{2} \\ Cu_{2}C_{6}H_{8}I_{2}N_{2} \\ ISbTe \\ Ca_{2}C_{2}F_{2}O6 \end{array}$
499 500 501 502 503 504	$\begin{array}{c} Cu_{2}I_{2}Te_{4} \\ Cu_{2}Br_{2}Se_{4} \\ Bi_{2}I_{2}S_{2} \\ Cu_{2}C_{6}H_{8}I_{2}N_{2} \\ ISbTe \\ Ca_{2}C_{2}F_{2}O6 \\ In_{2}P_{2}S_{6} \end{array}$
499 500 501 502 503 504 505 506	$\begin{array}{c} Cu_2I_2Te_4 \\ Cu_2Br_2Se_4 \\ Bi_2I_2S_2 \\ Cu_2C_6H_8I_2N_2 \\ ISbTe \\ Ca_2C_2F_2O6 \\ In_2P_2S_6 \\ Au_2Br_2Se_4 \\ \end{array}$
499 500 501 502 503 504 505 506 507	$\begin{array}{c} Cu_{2}I_{2}Te_{4} \\ Cu_{2}Br_{2}Se_{4} \\ Bi_{2}I_{2}S_{2} \\ Cu_{2}C_{6}H_{8}I_{2}N_{2} \\ ISbTe \\ Ca_{2}C_{2}F_{2}O6 \\ In_{2}P_{2}S_{6} \\ Au_{2}Br_{2}Se_{4} \\ Hf_{2}Zr_{2}Se_{8} \end{array}$
499 500 501 502 503 504 505 506 507 508	$\begin{array}{c} Cu_{2}I_{2}Te_{4} \\ Cu_{2}Br_{2}Se_{4} \\ Bi_{2}I_{2}S_{2} \\ Cu_{2}C_{6}H_{8}I_{2}N_{2} \\ ISbTe \\ Ca_{2}C_{2}F_{2}O6 \\ In_{2}P_{2}S_{6} \\ Au_{2}Br_{2}Se_{4} \\ Hf_{2}Zr_{2}Se_{8} \\ Hf_{2}CI_{4} \end{array}$
499 500 501 502 503 504 505 506 507 508 509	$\begin{array}{c} Cu_2I_2Te_4 \\ Cu_2Br_2Se_4 \\ Bi_2I_2S_2 \\ Cu_2C_6H_8I_2N_2 \\ ISbTe \\ Ca_2C_2F_2O6 \\ In_2P_2S_6 \\ Au_2Br_2Se_4 \\ Hf_2Zr_2Se_8 \\ Hf_2Cl_4 \\ FeCl_2 \end{array}$
499 500 501 502 503 504 505 506 507 508 509 510	$\begin{array}{c} Cu_{2}I_{2}Te_{4} \\ Cu_{2}Br_{2}Se_{4} \\ Bi_{2}I_{2}S_{2} \\ Cu_{2}C_{6}H_{8}I_{2}N_{2} \\ ISbTe \\ Ca_{2}C_{2}F_{2}O6 \\ In_{2}P_{2}S_{6} \\ Au_{2}Br_{2}Se_{4} \\ Hf_{2}Zr_{2}Se_{8} \\ Hf_{2}Cl_{4} \\ FeCl_{2} \\ Hf_{2}Zr_{2}Se_{8} \end{array}$
499 500 501 502 503 504 505 506 507 508 509 511	$\begin{array}{c} Cu_{2}I_{2}Te_{4} \\ Cu_{2}Br_{2}Se_{4} \\ Bi_{2}I_{2}S_{2} \\ Cu_{2}C_{6}H_{8}I_{2}N_{2} \\ ISbTe \\ Ca_{2}C_{2}F_{2}O6 \\ In_{2}P_{2}S_{6} \\ Au_{2}Br_{2}Se_{4} \\ Hf_{2}Zr_{2}Se_{8} \\ Hf_{2}Cl_{4} \\ FeCl_{2} \\ Hf_{3}ZrSe_{8} \\ Cd_{2}Te_{2} \end{array}$
499 499 500 501 502 503 504 505 506 507 508 509 510 511 512	$\begin{array}{c} Cu_{2}I_{2}Te_{4} \\ Cu_{2}Br_{2}Se_{4} \\ Bi_{2}I_{2}S_{2} \\ Cu_{2}C_{6}H_{8}I_{2}N_{2} \\ ISbTe \\ Ca_{2}C_{2}F_{2}O6 \\ In_{2}P_{2}S_{6} \\ Au_{2}Br_{2}Se_{4} \\ Hf_{2}Zr_{2}Se_{8} \\ Hf_{2}Cl_{4} \\ FeCl_{2} \\ Hf_{3}ZrSe_{8} \\ Cd_{2}Te_{2} \\ Ti_{2}Zr_{2}S_{8} \end{array}$
499 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513	$\begin{array}{c} Cu_{2}I_{2}Te_{4} \\ Cu_{2}Br_{2}Se_{4} \\ Bi_{2}I_{2}S_{2} \\ Cu_{2}C_{6}H_{8}I_{2}N_{2} \\ ISbTe \\ Ca_{2}C_{2}F_{2}O6 \\ In_{2}P_{2}S_{6} \\ Au_{2}Br_{2}Se_{4} \\ Hf_{2}Zr_{2}Se_{8} \\ Hf_{2}Cl_{4} \\ FeCl_{2} \\ Hf_{3}ZrSe_{8} \\ Cd_{2}Te_{2} \\ Ti_{2}Zr_{2}S_{8} \\ Ti_{2}Zr_{5}S_{8} \\ \end{array}$
499 500 501 502 503 504 505 506 507 508 509 511 512 513 514	$\begin{array}{c} Cu_{2}I_{2}Te_{4} \\ Cu_{2}Br_{2}Se_{4} \\ Bi_{2}I_{2}S_{2} \\ Cu_{2}C_{6}H_{8}I_{2}N_{2} \\ ISbTe \\ Ca_{2}C_{2}F_{2}O6 \\ In_{2}P_{2}S_{6} \\ Au_{2}Br_{2}Se_{4} \\ Hf_{2}Zr_{2}Se_{8} \\ Hf_{2}CI_{4} \\ FeCI_{2} \\ Hf_{3}ZrSe_{8} \\ Cd_{2}Te_{2} \\ Ti_{2}Zr_{2}S_{8} \\ Ti_{3}ZrS_{8} \\ BiClSe \\ \end{array}$
499 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515	$\begin{array}{c} Cu_{2}I_{2}Te_{4} \\ Cu_{2}Br_{2}Se_{4} \\ Bi_{2}I_{2}S_{2} \\ Cu_{2}C_{6}H_{8}I_{2}N_{2} \\ ISbTe \\ Ca_{2}C_{2}F_{2}O6 \\ In_{2}P_{2}S_{6} \\ Au_{2}Br_{2}Se_{4} \\ Hf_{2}Zr_{2}Se_{8} \\ Hf_{2}Cl_{4} \\ FeCl_{2} \\ Hf_{3}ZrSe_{8} \\ Cd_{2}Te_{2} \\ Ti_{2}Zr_{2}S_{8} \\ Ti_{3}ZrS_{8} \\ BiClSe \\ NiZrI_{6} \end{array}$
499 499 500 501 502 503 504 505 506 507 508 509 511 512 513 514 515 516	$\begin{array}{c} Cu_{2}I_{2}Te_{4} \\ Cu_{2}Br_{2}Se_{4} \\ Bi_{2}I_{2}S_{2} \\ Cu_{2}C_{6}H_{8}I_{2}N_{2} \\ ISbTe \\ Ca_{2}C_{2}F_{2}O6 \\ In_{2}P_{2}S_{6} \\ Au_{2}Br_{2}Se_{4} \\ Hf_{2}Zr_{2}Se_{8} \\ Hf_{2}Cl_{4} \\ FeCl_{2} \\ Hf_{3}ZrSe_{8} \\ Cd_{2}Te_{2} \\ Ti_{2}Zr_{2}S_{8} \\ Ti_{3}ZrS_{8} \\ BiClSe \\ NiZrI_{6} \\ Hf_{9}Br_{4} \\ \end{array}$
499 499 500 501 502 503 504 505 506 507 508 509 511 512 513 514 515 516 517	$\begin{array}{c} Cu_{2}I_{2}Te_{4} \\ Cu_{2}Br_{2}Se_{4} \\ Bi_{2}I_{2}S_{2} \\ Cu_{2}C_{6}H_{8}I_{2}N_{2} \\ ISbTe \\ Ca_{2}C_{2}F_{2}O6 \\ In_{2}P_{2}S_{6} \\ Au_{2}Br_{2}Se_{4} \\ Hf_{2}Zr_{2}Se_{8} \\ Hf_{2}Cl_{4} \\ FeCl_{2} \\ Hf_{3}ZrSe_{8} \\ Cd_{2}Te_{2} \\ Ti_{3}ZrS_{8} \\ BiClSe \\ NiZrI_{6} \\ Hf_{2}Br_{4} \\ Cu_{2}Cl_{4}Te_{4} \\ \end{array}$
499 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518	$\begin{array}{c} Cu_{2}I_{2}Te_{4} \\ Cu_{2}Br_{2}Se_{4} \\ Bi_{2}I_{2}S_{2} \\ Cu_{2}C_{6}H_{8}I_{2}N_{2} \\ ISbTe \\ Ca_{2}C_{2}F_{2}O6 \\ In_{2}P_{2}S_{6} \\ Au_{2}Br_{2}Se_{4} \\ Hf_{2}Zr_{2}Se_{8} \\ Hf_{2}Cl_{4} \\ FeCl_{2} \\ Hf_{3}ZrSe_{8} \\ Cd_{2}Te_{2} \\ Ti_{2}Zr_{2}S_{8} \\ Ti_{3}ZrS_{8} \\ BiClSe \\ NiZrI_{6} \\ Hf_{2}Br_{4} \\ Cu_{2}Cl_{2}Te_{4} \\ Cu_{2}Cl_{2}S_{4} \\ \end{array}$
499 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519	$\begin{array}{c} Cu_{2}I_{2}Te_{4} \\ Cu_{2}Br_{2}Se_{4} \\ Bi_{2}I_{2}S_{2} \\ Cu_{2}C_{6}H_{8}I_{2}N_{2} \\ ISbTe \\ Ca_{2}C_{2}F_{2}O6 \\ In_{2}P_{2}S_{6} \\ Au_{2}Br_{2}Se_{4} \\ Hf_{2}Zr_{2}Se_{8} \\ Hf_{2}Cl_{4} \\ FeCl_{2} \\ Hf_{3}ZrSe_{8} \\ Cd_{2}Te_{2} \\ Ti_{2}Zr_{2}S_{8} \\ Ti_{3}ZrS_{8} \\ BiClSe \\ NiZrI_{6} \\ Hf_{2}Br_{4} \\ Cu_{2}Cl_{2}Te_{4} \\ Cu_{2}I_{2}S_{4} \\ K_{2}Os_{2}F_{10}N_{2}O_{2} \\ \end{array}$
499 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520	$\begin{array}{c} Cu_{2}I_{2}Te_{4} \\ Cu_{2}Br_{2}Se_{4} \\ Bi_{2}I_{2}S_{2} \\ Cu_{2}C_{6}H_{8}I_{2}N_{2} \\ ISbTe \\ Ca_{2}C_{2}F_{2}O6 \\ In_{2}P_{2}S_{6} \\ Au_{2}Br_{2}Se_{4} \\ Hf_{2}Zr_{2}Se_{8} \\ Hf_{2}Cl_{4} \\ FeCl_{2} \\ Hf_{3}ZrSe_{8} \\ Cd_{2}Te_{2} \\ Ti_{3}ZrS_{8} \\ BiClSe \\ NiZrI_{6} \\ Hf_{2}Br_{4} \\ Cu_{2}Cl_{2}Te_{4} \\ Cu_{2}I_{2}S_{4} \\ K_{2}Os_{2}F_{10}N_{2}O_{2} \\ NiC_{4}Cl_{2}H_{4}N_{2} \end{array}$
499 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521	$\begin{array}{c} Cu_2I_2Te_4 \\ Cu_2Br_2Se_4 \\ Bi_2I_2S_2 \\ Cu_2C_6H_8I_2N_2 \\ ISbTe \\ Ca_2C_2F_2O6 \\ In_2P_2S_6 \\ Au_2Br_2Se_4 \\ Hf_2Zr_2Se_8 \\ Hf_2CI_4 \\ FeCl_2 \\ Hf_3ZrSe_8 \\ Cd_2Te_2 \\ Ti_3ZrS_8 \\ BiClSe \\ NiZrI_6 \\ Hf_2Br_4 \\ Cu_2Cl_2Te_4 \\ Cu_2I_2S_4 \\ K_2Os_2F_{10}N_2O_2 \\ NiC_6Cl_2H_4N_2 \\ HfTi_2S_9 \\ \end{array}$
499 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522	$\begin{array}{c} Cu_2I_2Te_4\\ Cu_2Br_2Se_4\\ Bi_2I_2S_2\\ Cu_2C_6H_8I_2N_2\\ ISbTe\\ Ca_2C_2F_2O6\\ In_2P_2S_6\\ Au_2Br_2Se_4\\ Hf_2Zr_2Se_8\\ Hf_2CI_4\\ FeCl_2\\ Hf_3ZrSe_8\\ Cd_2Te_2\\ Ti_2Zr_2S_8\\ Ti_3ZrS_8\\ BiCISe\\ NiZrI_6\\ Hf_2Br_4\\ Cu_2Cl_2Te_4\\ Cu_2I_2S_4\\ K_2Os_2F_{10}N_2O_2\\ NiC_6Cl_2H_4N_2\\ HfTi_3S_8\\ Hf_2P_S \end{array}$

524	$Ta_2I_4O_2$
525	$Mo_2W_2Te_8$
526	HfNiI ₆
527	FeGa ₂ S ₄
528	AgInP ₂ Se ₆
529	Cr ₃ WS ₈
530	Pd_2F_2
531	Pd_2Cl_4
532	Bi_2Br_2
533	FeZrBr ₆
534	Cu ₂ ReF ₆
535	$Cu_2Br_2Te_4$
536	NiBr ₂
537	ZrClI
538	MnI ₂
539	CrS ₂
540	TiSe ₂
541	CrW ₃ Se ₈
542	Sc ₂ CCl ₂
543	HfSSe
544	Cr ₂ I ₆
545	BiBrS
546	$V_2H_4O_{10}Se_2$
547	SnH ₂ O ₂
548	Bi ₂ Cl ₂
549	Cu ₂ MoSe ₄
550	ZnI_2
551	BP
552	Cr ₃ MoS ₈
553	$Zr_3F_2N_2O_2$
554	Mo ₃ WTe ₈
555	TiCl ₂
556	P ₄
557	HfCl ₂
558	$Ag_2Au_2Cl_8$
559	AgGaP ₂ Se ₆
560	$Hf_2Ti_2S_8$
561	ZrBrCl
562	MoO ₂
563	Ge ₂ H ₂
564	Ni ₂ Te ₄
565	Sn_2Se_2
566	PbTe
567	MoTe ₂
568	$Cu_2Br_2S_4$
569	Hf_2CO_2
570	FeHfBr ₆
571	Ag_2MoS_4
572	$Cr_2W_2S_8$
573	Bi ₂ Cl ₂ S ₂
574	Zr ₂ CO ₂
575	Fe ₂ Mo ₂ Cl ₂ O ₈
576	CrMo ₃ Se ₈

577	Au_2Se_2
578	Zn_2Te_4
579	Ag_2S_2
580	Co_2Br_6
581	ZrS_2
582	$Bi_2Br_2S_2$
583	Pb_2P2Se_6
584	$P_2Sb_2Se_6$
585	Mo_2I_6
586	ZrCl ₂
587	$Au_2Cl_2Te_4$
588	AsITe
589	Sb ₂
590	$Ge_2P_2Se_6$
591	In_2I_2
592	HfTe ₂
593	Rh ₂ I ₆
594	MoSTe
595	TiZr ₃ S ₈
596	$Ag_2Cr_2P_4S_{12}$
597	Ca ₄ As ₄
598	$Ga_2I_2O_2$
599	BiClS
600	ISbSe
601	BiCuP ₂ Se ₆
602	Hf ₃ TiS ₈
603	ISbTe
604	ISbSe
605	Gel ₂
606	$\Pi_2 Br_2 O_2$
607	$V_2 \Gamma_2 O_7 I e_2$
600	$Au_2Br_2 Ie_4$
610	$CI_2IMO_2S_8$
611	
612	ng2r2S6
612	BiBrSo
614	Rul ₂
615	Nb ₂ LO ₂
616	CuBr
617	Ag ₂ ReF ₆
618	Ag ₂ I ₂ Te ₄
619	PhSe ₂
620	$T_{12}C_{12}O_{2}$
621	$Pd_2L_4O_{12}$
622	WSeTe
623	Sn ₂ P ₂ S ₆
624	$Nb_2Br_4O_2$
625	Rh ₂ Cl ₂ Te ₂
626	$Mo_2O_{10}P_2$
627	Nb ₂ Cl ₄ O ₂
628	RuBr ₂
629	MnI ₂

630	FeZrCl ₆
631	$K_2C_2O_6$
632	BrSbTe
633	MnZrI ₆
634	Ag ₂ I ₂ Se ₄
635	MoOS
636	HfS ₂
637	Al ₂ MgSe ₄
638	AsBrTe
639	$In_2Cl_2Se_2$
640	Cd ₂ Te ₄
641	$Sn_2I_2N_2$
642	Pd ₄ I ₈
643	BrSbSe
644	Ag ₂ WSe ₄
645	Au ₂ WS ₄
646	Au ₄ I ₄ Te ₄
647	Bi ₂ I ₂ O ₂
648	$Cr_2Cu_2P_4S_{12}$
649	NiH2O2
650	In ₂ Te ₅
651	Nb ₂ Cl ₄ Se ₄
652	Ph ₂ S ₄
653	Fe ₂ W ₂ Cl ₂ O ₂
654	FeHfCl
655	
656	SpL
050	51112
657	Nb-Br Sc
657 658	Nb ₂ Br ₄ Se ₄
657 658	Nb ₂ Br ₄ Se ₄ InP
657 658 659	Nb ₂ Br ₄ Se ₄ InP VCII
657 658 659 660 661	Nb ₂ Br ₄ Se ₄ InP VCII OsI ₂
657 658 659 660 661 662	$\begin{array}{c} Nb_2Br_4Se_4\\ InP\\ VCII\\ OsI_2\\ AgBiP_2Se_6\\ Bi_4L\\ \end{array}$
657 658 659 660 661 662 662	$\begin{array}{c} Nb_2Br_4Se_4\\ InP\\ VCII\\ OsI_2\\ AgBiP_2Se_6\\ Bi_2I_6\\ Cd_Mp_Q\\ \end{array}$
657 658 659 660 661 662 663 663	$\begin{array}{c} Nb_2Br_4Se_4\\ InP\\ VCII\\ OsI_2\\ AgBiP_2Se_6\\ Bi_2I_6\\ Cd_2Mn_3O_8\\ Pd, P, S_2\\ \end{array}$
657 658 659 660 661 662 663 664 664	$\begin{array}{c} Nb_2Br_4Se_4\\ InP\\ VCII\\ OsI_2\\ AgBiP_2Se_6\\ Bi_2I_6\\ Cd_2Mn_3O_8\\ Pd_4P_4Se_4\\ Zr_LN\\ \end{array}$
657 658 659 660 661 662 663 664 665	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
657 658 659 660 661 662 663 664 665 666	$\begin{array}{c} Nb_2Br_4Se_4\\ InP\\ VCII\\ OsI_2\\ AgBiP_2Se_6\\ Bi_2I_6\\ Cd_2Mn_3O_8\\ Pd_4P_4Se_4\\ Zr_2I_2N_2\\ Al_2Mg_2Se_5\\ Al_Si_Tr_2\\ \end{array}$
657 658 659 660 661 662 663 664 665 666 667	$\begin{array}{c} Nb_{2}Br_{4}Se_{4} \\ InP \\ VCII \\ OsI_{2} \\ AgBiP_{2}Se_{6} \\ Bi_{2}I_{6} \\ Cd_{2}Mn_{3}O_{8} \\ Pd_{4}P_{4}Se_{4} \\ Zr_{2}I_{2}N_{2} \\ Al_{2}Mg_{2}Se_{5} \\ Al_{2}Si_{2}Te_{6} \\ Pa_{2}Se_{3} \\ Pa_{3}Se_{3} \\ Pd_{4}P_{4}Se_{4} \\ Zr_{2}I_{2}N_{2} \\ Se_{3} \\ Pd_{4}P_{4}Se_{4} \\ Zr_{2}I_{2}N_{2} \\ Se_{3} \\ Se_{4} \\ Se_{5} \\$
657 658 659 660 661 662 663 664 665 666 667 668	$\begin{array}{c} Nb_{2}Br_{4}Se_{4} \\ InP \\ VCII \\ OsI_{2} \\ AgBiP_{2}Se_{6} \\ Bi_{2}I_{6} \\ Cd_{2}Mn_{3}O_{8} \\ Pd_{4}P_{4}Se_{4} \\ Zr_{2}I_{2}N_{2} \\ Al_{2}Mg_{2}Se_{5} \\ Al_{2}Si_{2}Te_{6} \\ Re_{4}Se_{8} \\ VCE \end{array}$
657 658 659 660 661 662 663 664 665 666 667 668 669	$\begin{array}{c} Nb_{2}Br_{4}Se_{4} \\ InP \\ VCII \\ OsI_{2} \\ AgBiP_{2}Se_{6} \\ Bi_{2}I_{6} \\ Cd_{2}Mn_{3}O_{8} \\ Pd_{4}P_{4}Se_{4} \\ Zr_{2}I_{2}N_{2} \\ Al_{2}Mg_{2}Se_{5} \\ Al_{2}Si_{2}Te_{6} \\ Re_{4}Se_{8} \\ Y_{2}CF_{2} \\ Cr_{4}A \\ \end{array}$
657 658 659 660 661 662 663 664 665 666 667 668 669 670	$\begin{array}{c} Nb_{2}Br_{4}Se_{4} \\ InP \\ VCII \\ OsI_{2} \\ AgBiP_{2}Se_{6} \\ Bi_{2}I_{6} \\ Cd_{2}Mn_{3}O_{8} \\ Pd_{4}P_{4}Se_{4} \\ Zr_{2}I_{2}N_{2} \\ Al_{2}Mg_{2}Se_{5} \\ Al_{2}Si_{2}Te_{6} \\ Re_{4}Se_{8} \\ Y_{2}CF_{2} \\ GaAs \\ Pd_{4}P_{4}Se_{4} \\ Se_{4} \\ Se_{4}Se_{5} \\ Se_{5} \\ $
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671	$\begin{array}{c} Nb_2Br_4Se_4 \\ InP \\ VCII \\ OsI_2 \\ AgBiP_2Se_6 \\ Bi_2I_6 \\ Cd_2Mn_3O_8 \\ Pd_4P_4Se_4 \\ Zr_2I_2N_2 \\ Al_2Mg_2Se_5 \\ Al_2Si_2Te_6 \\ Re_4Se_8 \\ Y_2CF_2 \\ GaAs \\ Pd_2S_4 \\ $
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672	$\begin{array}{c c} Nb_2Br_4Se_4 \\ \hline InP \\ VCII \\ OsI_2 \\ AgBiP_2Se_6 \\ Bi_2I_6 \\ Cd_2Mn_3O_8 \\ Pd_4P_4Se_4 \\ Zr_2I_2N_2 \\ Al_2Mg_2Se_5 \\ Al_2Si_2Te_6 \\ Re_4Se_8 \\ Y_2CF_2 \\ GaAs \\ Pd_2S_4 \\ Pd_2O_6Se_2 \\ Cutop$
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673	$\begin{array}{c c} Nb_2Br_4Se_4 \\ \hline InP \\ VCII \\ OsI_2 \\ AgBiP_2Se_6 \\ Bi_2I_6 \\ Cd_2Mn_3O_8 \\ Pd_4P_4Se_4 \\ Zr_2I_2N_2 \\ Al_2Mg_2Se_5 \\ Al_2Si_2Te_6 \\ Re_4Se_8 \\ Y_2CF_2 \\ GaAs \\ Pd_2S_4 \\ Pd_2O_6Se_2 \\ GeH_2O_2 \\ C & S \end{array}$
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674	$\begin{array}{c} Nb_2Br_4Se_4 \\ InP \\ VCII \\ OsI_2 \\ AgBiP_2Se_6 \\ Bi_2I_6 \\ Cd_2Mn_3O_8 \\ Pd_4P_4Se_4 \\ Zr_2I_2N_2 \\ Al_2Mg_2Se_5 \\ Al_2Si_2Te_6 \\ Re_4Se_8 \\ Y_2CF_2 \\ GaAs \\ Pd_2S_4 \\ Pd_2O_6Se_2 \\ GeH_2O_2 \\ Ge_2Se_2 \\ Pl_2O_2 \\ Ocupare \\ Cd_2Mn_3O_8 \\ Pl_2Se_2 \\ Pl_2O_2 \\ Ocupare \\ Pl_2O_2 \\ Ocup$
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675	$\begin{array}{c} Nb_2Br_4Se_4 \\ InP \\ VCII \\ OsI_2 \\ AgBiP_2Se_6 \\ Bi_2I_6 \\ Cd_2Mn_3O_8 \\ Pd_4P_4Se_4 \\ Zr_2I_2N_2 \\ Al_2Mg_2Se_5 \\ Al_2Si_2Te_6 \\ Re_4Se_8 \\ Y_2CF_2 \\ GaAs \\ Pd_2S_4 \\ Pd_2O_6Se_2 \\ GeH_2O_2 \\ Ge_2Se_2 \\ PbO_2 \\ \end{array}$
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676	$\begin{array}{c} Nb_2Br_4Se_4 \\ InP \\ VCII \\ OsI_2 \\ AgBiP_2Se_6 \\ Bi_2I_6 \\ Cd_2Mn_3O_8 \\ Pd_4P_4Se_4 \\ Zr_2I_2N_2 \\ Al_2Mg_2Se_5 \\ Al_2Si_2Te_6 \\ Re_4Se_8 \\ Y_2CF_2 \\ GaAs \\ Pd_2S_4 \\ Pd_2O_6Se_2 \\ GeH_2O_2 \\ Ge_2Se_2 \\ PbO_2 \\ CrW_3S_8 \\ Hint Canonic Canonic Constraints of the set $
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677	$\begin{array}{c} Nb_2Br_4Se_4 \\ InP \\ VCII \\ OsI_2 \\ AgBiP_2Se_6 \\ Bi_2I_6 \\ Cd_2Mn_3O_8 \\ Pd_4P_4Se_4 \\ Zr_2I_2N_2 \\ Al_2Mg_2Se_5 \\ Al_2Si_2Te_6 \\ Re_4Se_8 \\ Y_2CF_2 \\ GaAs \\ Pd_2O_6Se_2 \\ GeH_2O_2 \\ Ge_2Se_2 \\ PbO_2 \\ CrW_3S_8 \\ Hf_2Zr_2S_8 \\ \end{array}$
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678	$\begin{array}{c} Nb_2Br_4Se_4 \\ InP \\ VCII \\ OsI_2 \\ AgBiP_2Se_6 \\ Bi_2I_6 \\ Cd_2Mn_3O_8 \\ Pd_4P_4Se_4 \\ Zr_2I_2N_2 \\ Al_2Mg_2Se_5 \\ Al_2Si_2Te_6 \\ Re_4Se_8 \\ Y_2CF_2 \\ GaAs \\ Pd_2S_4 \\ Pd_2O_6Se_2 \\ GeH_2O_2 \\ Ge_2Se_2 \\ PbO_2 \\ CrW_3S_8 \\ Hf_2Zr_2S_8 \\ Co_2CI_6 \\ Cn \\ Co_2CI_6 \\ Cn \\ C$
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679	$\begin{array}{c} Nb_2Br_4Se_4 \\ InP \\ VCII \\ OsI_2 \\ AgBiP_2Se_6 \\ Bi_2I_6 \\ Cd_2Mn_3O_8 \\ Pd_4P_4Se_4 \\ Zr_2I_2N_2 \\ Al_2Mg_2Se_5 \\ Al_2Si_2Te_6 \\ Re_4Se_8 \\ Y_2CF_2 \\ GaAs \\ Pd_2S_4 \\ Pd_2O_6Se_2 \\ GeH_2O_2 \\ Ge_2Se_2 \\ PbO_2 \\ CrW_3S_8 \\ Hf_2Zr_2S_8 \\ Co_2Cl_6 \\ Pt_4Tl_2Se_6 \\ \end{array}$
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680	$\begin{array}{c} Nb_2Br_4Se_4 \\ InP \\ VCII \\ OsI_2 \\ AgBiP_2Se_6 \\ Bi_2I_6 \\ Cd_2Mn_3O_8 \\ Pd_4P_4Se_4 \\ Zr_2I_2N_2 \\ Al_2Mg_2Se_5 \\ Al_2Si_2Te_6 \\ Re_4Se_8 \\ Y_2CF_2 \\ GaAs \\ Pd_2S_4 \\ Pd_2O_6Se_2 \\ GeH_2O_2 \\ Ge_2Se_2 \\ PbO_2 \\ CrW_3S_8 \\ Hf_2Zr_2S_8 \\ Co_2CI_6 \\ Pt_4Tl_2Se_6 \\ MnO_2 \\ \end{array}$
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681	$\begin{array}{c} Nb_2 Br_4 Se_4 \\ InP \\ VCII \\ OsI_2 \\ AgBiP_2 Se_6 \\ Bi_2 I_6 \\ Cd_2 Mn_3 O_8 \\ Pd_4 P_4 Se_4 \\ Zr_2 I_2 N_2 \\ Al_2 Mg_2 Se_5 \\ Al_2 Si_2 Te_6 \\ Re_4 Se_8 \\ Y_2 CF_2 \\ GaAs \\ Pd_2 O_6 Se_2 \\ GeH_2 O_2 \\ Ge_2 Se_2 \\ PbO_2 \\ CrW_3 S_8 \\ Hf_2 Zr_2 S_8 \\ Co_2 Cl_6 \\ Pt_4 Tl_2 Se_6 \\ MnO_2 \\ MoSeTe \\ \end{array}$

683	In ₂ Te ₂
684	Hf ₃ ZrS ₈
685	AsISe
686	Ga ₂ I ₆
687	HfZr ₃ S ₈
688	OsBr ₂
689	Hf_2S_6
690	ZrS_2
691	Pb_2S_2
692	PtSe ₂
693	$Ag_2Br_2S_4$
694	PdS ₂
695	ClSbSe
696	RuCl ₂
697	Zr_2S_6
698	CrMo ₃ S ₈
699	As ₈ Ge ₄
700	$Ag_2Cl_2S_4$
701	BiBrS
702	Nb ₂ I ₂ O ₄
703	$Ag_2I_2S_4$
704	VBrI
705	$In_2I_2O_2$
706	Re ₆ Cl ₂ Se ₈
707	$Pd_4P_4S_4$
708	Se ₂ Si ₂
709	TiO ₂
710	$Cu_2As_4Cl_2S_3$
711	HgI ₂
712	VI ₂
713	FeZrF ₆
714	Pd_2Te_4
715	$Ag_2Br_2Te_4$
716	Au_2S_2
717	BrSSb
718	NiCl ₂
719	ISSb
720	FeHfF ₆
721	HfS ₂
722	MnI_2
723	Pt ₄ I ₈
724	Cu_2Cl_2
725	AsBrSe
726	$In_2Br_2Se_2$
727	In ₂ Te ₂
728	Cu ₂ WSe ₄
729	BiClSe
730	$\Delta g_{2}Br_{2}Se_{4}$
150	11g2D12004
731	AsBrTe
731 732	AsBrTe AlAs
731 732 733	AsBrTe AlAs WSe ₂
731 732 733 734	AsBrTe AlAs WSe ₂ WOSe

736	$Pt_4Tl_2S_6$
737	ClSbTe
738	MoW ₃ Se ₈
739	$In_2I_2Se_2$
740	C ₆ N ₈
741	TiS ₂
742	Ga ₂ Te ₂
743	$Mo_2W_2Se_8$
744	SnBr ₂
745	$Cd_2P_2Se_6$
746	Re_4S_8
747	Hg_2I_2
748	NiO ₂
749	AsClTe
750	VBrCl
751	Cu ₃ O ₄ P
752	Ag ₂ Cl ₂ Te ₄
753	PbI ₂
754	Ga ₂ Te ₂
755	Mo ₃ WSe ₈
756	NiZrBr ₆
757	Br ₂ Ge
758	Re ₄ O ₈
759	$Al_2P_2S_6$
760	$Zn_2P_2Se_6$
761	Pt ₂ Cl ₂
762	Pt ₂ Te ₄
763	Pd_2Se_4
764	Al_2O_2
765	ClSSb
766	AgInP ₂ S ₆
767	BrSbTe
768	In_2Se_2
769	MoSe ₂
770	NiC ₄ H ₈ N ₂ O ₄
771	OsCl ₂
772	In_2F_2
773	AsIS
774	In_2Br_2
775	$Ag_2Cl_2Se_4$
776	WO ₂
777	Rh ₂ Br ₆
778	GeS ₂
779	PbO ₂
780	Ga ₂ Br ₆
781	VCl ₂
782	HfNiBr ₆
783	V ₂ O ₅
784	Ir ₂ I ₆
785	HfMnI ₆
786	CdS ₂
787	Cd ₂ Se ₄
788	$Pb_2P_2S_6$

789	$Sn_2Br_2N_2$
790	Cl2Ge
791	AsClSe
792	Bi ₂ I ₆
793	PdO ₂
794	Ag_2WS_4
795	Zn_2Se_4
796	S ₂ Si
797	Ba ₄ F ₄ Sb ₄ Se ₈
798	AsBrS
799	PbS ₂
800	$Sc_2I_2Se_2$
801	ClSbTe
802	Cr_2F_4
803	WSSe
804	Cd ₂ Se ₂
805	In_2Se_2
806	Ge ₂ P ₂ S ₆
807	Sn ₂ Cl ₂ N ₂
808	Sc ₂ Cl ₂ Se ₂
809	Sn_2S_2
810	Al ₂ Cl ₂ Se ₂
811	AsBrS
812	S ₂ Si ₂
813	Ga ₂ Cl ₂ S ₂
814	As ₈ Si ₄
815	Mo ₂ Br ₄ O ₄
816	BrSSb
817	BiClS
818	$Pd_2N_4O_{12}$
819	Bi ₂ Br ₂ O ₂
820	SnS ₂
821	Pt ₂ Se ₄
822	ZrSe ₂
823	Cu ₂ Cl ₂
824	SnCl ₂
825	MoSSe
826	GeO ₂
827	ScO ₂
828	BrShSe
829	GeTe
830	MnBr ₂
831	AsCITe
832	As ₂
833	Ga ₂ Br ₂ S ₂
834	CdI ₂
835	AlaIaSea
836	Cll2Br2
837	AsBrSe
838	PhI
830	BraGeaNa
840	WOS
841	AlSh

842	Cr ₂ Br ₆
843	$Sc_2Br_2Se_2$
844	Sc_4S_6
845	Cd_2S_4
846	Cu ₂ Br ₂
847	MoW ₃ S ₈
848	$Mo_2W_2S_8$
849	PbSe
850	WS_2
851	Cu_2WS_4
852	$Al_2Br_2Se_2$
853	AsClS
854	P_8Si_4
855	$In_2I_2S_2$
856	HgI ₂
857	$Mn_2Mo_2O_{12}Te_2$
858	In_2Cl_2
859	NiCl ₂ O ₈
860	$Nb_2Br_4S_4$
861	Ga ₂ O ₂
862	Mo ₃ WS ₈
863	V_4O_{10}
864	MnRe ₂ O ₈
865	$V_2O_{10}P_2$
866	Au_2CaF_{12}
867	Ir_2Br_6
868	PbH ₂ O ₂
869	Ag_2Cl_2
870	CdF_2O_2
871	HgBr ₂
872	NiRe ₂ O ₈
873	PbI ₂
874	MoS_2
875	SnTe
876	GaP
877	$Hf_2I_2N_2$
878	SnS ₂
8/9	MnBr ₂
880	Kh ₂ Cl ₆
881	In_2I_6
882	N1ZrUl ₆
883	
884 005	III_2S_2
885	$Ag_8C_4N_8$
880	$ND_2CI_4S_4$
000	$A1_2I_2S_2$
<u>888</u>	LI2DI2IN2
007	$\frac{111111116}{7n50}$
890	LII2Se2
071	
07 <u>2</u> 802	
073	Agour2006
074	ЭШГ 2

895	MnZrBr ₆
896	In_4Br_8
897	Ga_2Se_2
898	PbBr ₂
899	Tl_2Br_6
900	$Sc_2I_2S_2$
901	Hg_4I_8
902	ClSSb
903	ClSbSe
904	PtO ₂
905	In_2S_2
906	Tl_2Cl_6
907	HfSe ₂
908	PtS ₂
909	$Li_2F_2S_2$
910	ZrO ₂
911	Zn_2S_4
912	SnO
913	MnCl ₂
914	Ge_2S_2
915	AsClSe
916	Ag_2Br_2
917	AsClS
918	$In_4I_4Te_4$
919	Bi ₂ Cl ₂ O ₂
920	As ₄ Se ₆
921	Cr_2Cl_6
922	$As_4Ge_4Se_4$
923	$MnF_{12}Sb_2$
924	Bi_2Br_6
925	$W_2O_{12}Sb_4$
926	Al_2Te_2
927	ZnI_2
928	$Pd_3P_2S_8$
929	Ga_2Se_2
930	Ag_2I_2
931	Al_8Te_{12}
932	MnBr ₂
933	Cd_2S_2
934	Ga_2I_2
935	Cu_2I_2
936	In_2I_2
937	$Sc_4I_4O_4$
938	MnCl ₂
939	$In_2Cl_2S_2$
940	PbO
941	Pt_2S_4
942	$Sc_2I_2O_2$
943	$Zr_2Br_2N_2$
944	PbS
945	$Zn_2H_8N_4Te_2$
946	Ir_2Cl_6
947	I_6Sb_2

948	Ag_2Br_2
949	FeMn ₂ C ₆ N ₆
950	SnI ₂
951	Na ₂ F ₂ S ₂
952	$\frac{7}{2}$
053	Sc.L.
054	Cl. Go. N.
954	
955	SC_2I_6
956	
957	Ag_2I_2
958	GaN
959	$O_4S_8Sb_8$
960	$Cd_2P_2S_6$
961	Ti ₄ O ₈
962	$Sc_2P_2S_8$
963	$In_2Br_2S_2$
964	Tl_2Cl_4
965	As ₂ I ₆
966	$Zr_2Cl_2N_2$
967	SnI ₂
968	ZrS_2
969	HfQ ₂
970	P_2
971	Γ_2
072	$CE_2C_{61}CE_5C_6$
972	DhCl
975	$FUCI_2$
974	Ag_2WO_4
9/5	$B_{12}Br_6$
9/6	Gel ₂
9//	$Hf_2Br_2N_2$
978	$Al_2 Ie_2$
979	$Ga_2In_2S_6$
980	HgBr ₂
981	Au_2Br_2
982	Al_2Se_2
983	Ag_2Cl_2
984	PbBr ₂
985	HgBr ₂
986	In ₂ Br ₆
987	AgScP ₂ S ₆
988	In ₄ Br ₄ Te ₄
989	MnCl ₂
990	$V_4 O_{10}$
991	Zn ₂ Se ₂
992	
903	MgoPoSec
004	$\frac{1}{2} \frac{1}{2} \frac{1}$
994	
995	
996	V_4O_{10}
997	
998	$Hf_2Br_2N_2$
999	Mo ₂ O ₆
1000	$HgCl_2$

	1
1001	Ag ₂ MoO ₄
1002	Al_2S_2
1003	$Zn_2P_2S_6$
1004	HgF ₂
1005	Zn_2I_2
1006	Al ₂ I ₆
1007	HfS ₂
1008	SnBr ₂
1009	SnO ₂
1010	Hf ₂ Cl ₂ N ₂
1011	$Sc_2Cl_2S_2$
1012	$Mn_2H_4O_8S_2$
1013	Ga ₂ Br ₂
1014	$Sc_2Br_2S_2$
1015	GeO
1016	CdI ₂
1017	Al ₂ Se ₂
1018	Al ₂ S ₂
1019	Ga ₂ Cl ₂ Te ₂
1020	H_2Si_2
1021	CdC ₄ Cl ₂ H ₄ N ₂
1022	SnSe
1023	Ga ₂ S ₂
1024	Bi ₂ Cl ₆
1025	$Hg_2V_2O_6$
1026	$W_2Cl_4O_4$
1027	GeSe
1028	AlalaOa
1029	Pb2Br4
1030	CdH ₂ O ₂
1031	As ₄ S ₆
1032	Al ₂ Tl ₂ F ₈
1033	AlP
1034	CdH ₂ S ₂
1035	Al ₂ Br ₂ S ₂
1036	As ₄ S ₆
1037	PbBr ₂
1038	$Hg_4M_{02}O_{\circ}$
1039	CsC2I2N2
1040	Na ₂ Nb ₂ Cl ₁₂
1041	SnS
1042	In ₂ Br ₂ O ₂
1043	In ₂ Cl ₂
1044	Br2Ge
1045	GasSa
1045	Su ₂ S ₂ SnCl ₂
1047	Hf2Cl2N2
1047	Br _c Sh ₂
1040	$7nH_{2}O_{2}$
1049	
1050	CdI ₂
1051	HgH ₂ S ₂
1052	BioCl
1033	D12C16

1054	PbCl ₂
1055	CdBr ₂
1056	$Na_4O_8S_4$
1057	Ga ₂ Cl ₂
1058	Tl_2I_2
1059	Pb ₂ O ₂
1060	ZnBr ₂
1061	Tl_2Br_2
1062	Tl_2Cl_6
1063	ZnI_2
1064	HgCl ₂
1065	GeS
1066	Cu ₂ MoO ₄
1067	Ti ₂ O ₆
1068	HgCl ₂
1069	As_2Br_6
1070	Sn ₂ O ₂
1071	SnBr ₂
1072	Al_2Br_6
1073	$Hg_4W_2O_8$
1074	$Cu_2C_2Cl_2O_2$
1075	MgF_2S_2
1076	$Ga_2Br_2O_2$
1077	CdCIHO
1078	Ga ₂ Cl ₆
1079	Br ₂ Ge
1080	Zn_2S_2
1081	$\frac{MO_2 I a_2 O_{11}}{M \cdot I}$
1082	MgI ₂
1085	$I_{2}I_{6}$
1084	П40121е4 DbE
1085	Ga-Br.
1080	Ha-GeO
1087	Ing20004
1080	Ph ₄ O ₄
1002	ClaGe
1090	Li2H4N2O6
1092	$\frac{\text{Au}_2 \text{M}_4 \text{U}_2 \text{O}_0}{\text{Au}_2 \text{M}_0 \text{O}_4}$
1093	Sc ₂ Br ₆
1094	K ₂ C ₆ H ₆ O ₆
1095	$Ga_2F_4H_{10}N_4$
1096	Tl ₂ Cl ₂
1097	O ₈ Te ₄
1098	SnO ₂
1099	TiO ₂
1100	Bi ₄ Sr ₂ O ₈
1101	PbF ₄
1102	PbWO ₄
1103	$Sr_2Cl_4O_8$
1104	$Zn_2Ge_2O_6$
1105	In_2Br_6
1106	SnCl ₂

1107	Y_2I_6
1108	PbCl ₂
1109	InLiI ₄ O ₁₂
1110	Na ₂ Ta ₂ Cl ₁₂
1111	$Mg_2P_2S_6$
1112	Na ₂ H ₂ O ₂
1112	Li ₂ H ₂ O ₂
1113	InNoLO
1114	No.E.O.
1115	$\operatorname{Na}_{2}\Gamma_{2}O_{2}$
1110	$A_1 I = D S$
1117	$AILIP_2S_6$
1118	CaF_2O_2
1119	$Tl_2O_6Sb_2$
1120	Li ₂ PtH ₆ O ₆
1121	Na ₂ PtH ₆ O ₆
1122	$Bi_2Cd_2Cl_2O_4$
1123	Ti ₂ O ₄
1124	SrF_2O_2
1125	In ₂ Cl ₆
1126	$Bi_4B_4O_{12}$
1127	CdPb ₂ Cl ₂ O ₂
1128	AIN
1120	Cu ₂ WO ₄
1129	$L_{12}E_{2}O_{2}$
1130	$M_{00}Zn_{0}O_{0}$
1122	
1132	
1133	
1134	Cl ₂ Ge
1135	Au_2WO_4
1136	MgF_2O_2
1137	Sc_2Br_6
1138	GeO ₂
1139	BiHO ₆ Se ₂
1140	Sn_2O_2
1141	Tl_2Br_2
1142	CdBr ₂
1143	CdCl ₂
1144	$Mo_2Zn_2O_{12}Te_2$
1145	C_2F_2
1146	$K_2N_2O_6$
1147	Mg ₂ Mo ₂ O ₁₂ Te ₂
1148	Sc ₂ O ₁₃ Te ₅
1149	$O_{14}S_{2}Te_{4}$
1150	$M_{0_2}ZrO_2$
1150	ScaBraOa
1157	
1152	ScoClc
1155	JC-H-NO
1134	$Li C_5 \Pi_5 IN_2 U_5$
1155	
1156	$2n_2Cl_4O_6Sb_4$
1157	$Hg_4K_2Cl_6O_6S_2$
1158	ZnBr ₂
1159	MgI_2

1160	Hg ₂ K ₄ Cl ₈
1161	BaI ₂
1162	Li ₂ Cl ₂ O ₄
1163	$Mg_3H_4O_9Si_2$
1164	MgH ₂ O ₂
1165	ZnBr ₂
1166	MgH ₂ O ₂
1167	Bi ₂ Ge ₃ O ₉
1168	$As_2O_8Sb_2$
1169	$As_2H_2O_{10}Te_2$
1170	Zn ₂ O ₆ Si ₂
1171	$Ag_2C_8N_6$
1172	SrI ₂
1173	Li ₄ CO ₄
1174	S ₈ Si ₄
1175	ZnCl ₂
1176	C ₂ H ₂
1177	V ₄ F ₁₂ O ₄
1178	Hf ₂ O ₆
1179	TiO ₂
1180	$Rb_2Br_2F_8$
1181	Y ₂ Br ₆
1182	$Na_2H_2O_2$
1183	MgH ₂ S ₂
1184	$Hg_3B_2O_6$
1185	FeSn ₂ C ₆ N ₆
1186	CaI ₂
1187	$Na_2H_2S_2$
1188	MgBr ₂
1189	Zr ₂ O ₆
1190	$Na_2H_8I_2O_4$
1191	$Zn_2As_4O_8$
1192	O ₆ Sb ₄
1193	CdCl ₂
1194	Tl_2Cl_2
1195	GeO ₂
1196	Ga ₂ Cl ₂ O ₂
1197	SrH ₂ O ₂
1198	CaH ₂ O ₂
1199	Rb ₂ I ₂
1200	Bi ₂ O ₉ Si ₃
1201	In ₂ Cl ₆
1202	$Ge_3O_9Sb_2$
1203	CH ₂ Si
1204	As ₄ O ₆
1205	CdF ₂
1206	SrH_2S_2
1207	CaH ₂ S ₂
1208	Ga ₂ Cl ₆
1209	Al ₂ Cl ₆
1210	CdCl ₂
1211	BaI ₂
1212	As ₄ O ₆

1213	K_2I_2
1214	Al_2Br_6
1215	SrI ₂
1216	Sc_2Cl_6
1217	$Ca_2Sn_4F_{12}$
1218	Li ₂ H ₂ O ₂
1219	Na ₂ SnH ₆ O ₆
1220	FeZn ₂ C ₆ N ₆
1221	Bal
1222	Re ₂ ZnO ₈
1223	Li ₂ H ₂ S ₂
1224	$Ca_4O_{12}Te_4$
1225	As2O6Sb2
1225	
1220	SrI2
1227	Sn ₂ F ₂ O ₂ P ₂
1220	Sn ₂ C ₂ H ₂ O ₆ P ₂
1220	LicHoOoTeo
1230	$C_{s_2}Br_2$
1231	SnF.
1232	V.Br
1233	$\Gamma_2 D \Gamma_6$
1234	$U_2\Pi 4U_8Se_2$
1233	$\frac{\Pi \Pi a_2 \Pi_6 U_6}{N_0 C N S}$
1230	$\operatorname{Na}_2\operatorname{C}_2\operatorname{N}_2\operatorname{S}_2$
1237	
1238	$Al_2Br_2O_2$
1239	CS_2F_2
1240	BaBr ₂
1241	$\mathbf{K} \mathbf{U}_2 \mathbf{D} \mathbf{I}_2$
1242	$Ca_2DI_2\Pi_2$
1245	
1244	
1245	$\frac{\text{Da}_2\Pi_8\text{O}_6}{\text{S}_2\text{C}_1\text{O}}$
1240	$3c_2C_1O_2$
1247	AS4U ₆
1240	$ZI\Pi_2 O_6 \Gamma_2$
1249	$Ga_2\Pi_2O_8Se_2$
1250	$Sn_2H_2O_6P_2$
1251	D: E
1252	$Dl_2\Gamma_6$
1255	Na4AS4U8
1254	$Sr_2Br_2H_2$
1255	$As_2O_8P_2$
1250	$2rO_2$
1257	$O_8P_2SO_2$
1258	$\mathbf{K}_2 \mathbf{B} \mathbf{f}_2$
1239	$SII_2O_8S_2$
1260	$I_2 C I_2 O_2$
1261	$Sr_2H_8U_6$
1262	1 ₂ Cl ₆
1263	
1264	ZrO_2
1265	$Zn_2H_4O_8Se_2$

1266	ZnCl ₂
1267	$MgNa_2H_4O_8S_2$
1268	$As_4O1_2S_2$
1269	Cs_2Cl_2
1270	$K_2C_2H_2O_6$
1271	HfO ₂
1272	Mg_2Cl_4
1273	$As_4H_2O_{12}P_2$
1274	Rb_2F_2
1275	BaBr ₂
1276	SrBr ₂
1277	MgBr ₂
1278	Rb ₂ Cl ₂
1279	BN
1280	$K_2C_4H_6O_6$
1281	$Na_2B_2H_8O_8$
1282	CaBr ₂
1283	BaCl ₂
1284	MgCl.

1285	CaCl ₂
1286	HfO ₂
1287	$Na_2C_2H_6N_8O_2$
1288	CaBr ₂
1289	K_2Cl_2
1290	BaBr ₂
1291	SrBr ₂
1292	SrCl ₂
1293	K_2F_2
1294	$BaF_{12}Sb_2$
1295	$O_{10}P_4$
1296	ZnC ₄ N ₆
1297	$Sr_2O_{12}P_4$
1298	Y ₂ Cl ₆
1299	$ZnB_2C_8N_8$
1300	BaCl ₂
1301	SrCl ₂
1302	MgCl ₂
1303	$K_2Cl_2O_6$

1304	$H_4O_{10}Si_4$
1305	Al ₂ Cl ₆
1306	CaCl ₂
1307	$Cs_2F_2H_6O_6P_2$
1308	BaCl ₂
1309	$Cs_2C_2F_6O_6S_2$
1310	BaF ₂
1311	$Ca_2Cl_4H_8O_4$
1312	$Al_2Cl_2O_2$
1313	SrCl ₂
1314	$Rb_2C_2F_6O_6S_2$
1315	CaCl ₂
1316	MgCl ₂
1317	BeH ₄ O ₄ P ₂
1318	SrF ₂
1319	MgB ₂ H ₈
1320	CaF ₂

FIG S2. Barrier heights of various 2D monolayers obtained from the C2DB database with 2D metals: (a) PdTe₂, (b) NbSe₂, (c) VS₂ and (d) ScS₂.

FIG S3. Count of various types of contacts formed by monolayers with metals, as obtained from PBE energy levels

FIG S4. Band structure (PBE) of metal monolayers: (a) PdTe₂ (b) NbSe₂ (c) VS₂ and (d)ScS₂

Table – S2 List of monolayers selected for forming actual vdW heterostructures with PdTe₂, NbSe₂, and ScS₂ metal monolayers, including space group, prototype, lattice constant, lattice mismatch, barrier height obtained from the database, and predicted type of contact based on barrier height.

Metal	Semiconduc tors	Space group	Prototype	Lattice constant	Lattice mismatch (%)	Barrier height (from database) eV	Type of contact predicted
PdTe ₂	BiClS	P3m1	ABC	4.229	4.68	-1.68	Ohmic (n)
P3m1	BiClSe	P3m1	ABC	4.146	2.62	-1.55	Ohmic (n)
4.04	PbS ₂	P3m1	ABC	3.848	4.75	-2.02	Ohmic (n)
AB2	Tl_2S_2	P-6m2	AB	4.057	0.42	-1.71	Ohmic (n)
	Tl ₂ Se ₂	P-6m2	AB	4.229	4.68	-1.41	Ohmic (n)
	HgBr ₂	P-6m2	AB2	3.976	1.58	-1.27	Ohmic (n)
	YI ₂	P-6m2	AB2	4.105	1.69	-0.46	Ohmic (p)
	ScI ₂	P-6m2	AB2	3.979	1.51	-0.31	Ohmic (p)
NbSe ₂	PbO ₂	P-3m1	AB2	3.402	2.24	-2.26	Ohmic (n)
P-3m1	GeS ₂	P-3m1	AB2	3.444	1.03	-0.87	Ohmic (n)
3.48	ZrSSe	P3m1	ABC	3.637	4.51	-0.52	Ohmic (n)
AB2	HfS ₂	P-6m2	AB2	3.543	1.81	-0.04	Ohmic (n)
	ZrS ₂	P-6m2	AB2	3.571	2.61	-0.10	Ohmic (n)
	In ₂ O ₂	P-6m2	AB	3.440	1.15	-1.32	Ohmic (n)
	ZrBr ₂	P-6m2	AB2	3.560	2.30	-1.02	Ohmic (p)
	HfBr ₂	P-6m2	AB2	3.500	0.57	-1.20	Ohmic (p)
	TiBr ₂	P-6m2	AB2	3.472	0.23	-1.14	Ohmic (p)
	HfBrI	P3m1	ABC	3.644	4.72	-1.34	Ohmic (p)
	TiBrI	P3m1	ABC	3.633	4.40	-1.29	Ohmic (p)
	HfClI	P3m1	ABC	3.578	2.82	-1.13	Ohmic (p)
	TiClI	P3m1	ABC	3.552	2.07	-1.06	Ohmic (p)
ScS ₂	HfBrI	P3m1	ABC	3.644	2.57	-3.82	Ohmic (p)

P3m1	ZrBrI	P3m1	ABC	3.703	0.99	-3.65	Ohmic (p)
3.74	TiBrI	P3m1	ABC	3.633	2.86	-3.77	Ohmic (p)
AB2	HfI_2	P-6m2	AB2	3.773	0.88	-4.01	Ohmic (p)
	TiI ₂	P-6m2	AB2	3.769	0.78	-3.95	Ohmic (p)
	ZrI_2	P-6m2	AB2	3.829	2.38	-3.83	Ohmic (p)

FIG S5. Optimized geometries of PdTe₂/HgBr₂ with different stacking order.

FIG S6. Optimized geometries of all vdW heterostructures formed with selected monolayers, including the structures of the metal monolayers.

FIG S7. Band structure (HSE06) of selected vdWHs formed with PdTe₂ metal monolayer. Blue and green bubbles represent the contributions of PdTe₂, and the chosen materials (Tl₂S₂, Tl₂Se₂, HgBr₂, PbS₂, BiClSe, BiClS, ScI₂, and YI₂) to the band structure, respectively. The orange and grey bubbles represent the CBM and VBM respectively of the semiconducting monolayers.

FIG S8. Band structure (HSE06) of selected vdW heterostructures formed with the NbSe₂ metal monolayer. Red and green bubbles represent the contributions of NbSe₂, and the chosen materials, both n-type (GeS₂, In₂O₂, PbO₂, HfS₂, ZrS₂, and ZrSSe) and p-type (HfBr₂, TiBr₂,

ZrBr₂, HfBrI, TiBrI and HfClI) to the band structure, respectively. The orange and grey bubbles represent the CBM and VBM respectively of the semiconducting monolayers.

FIG S9. Band structure (HSE06) of selected vdW heterostructures formed with ScS₂ metal monolayer. Brown and green bubbles represent the contributions of ScS₂ and the chosen materials (HfBr₂, TiBr₂, ZrBr₂, HfBrI, TiBrI and HfCII) predicted to form p-type contact with ScS₂, to the band structure, respectively.

Table – S3. Formation energy, lattice mismatch, barrier height, and contact type for the optimized geometries of actual van der Waals heterostructures with $PdTe_2$, $NbSe_2$ and ScS_2 metal monolayers.

vdWHs	Formation Energy (eV)	Stacking type	Lattice mismatch (%)	Barrier height (Actual vdWHs)	Type of contact (From
				(eV)	calculation)
PdTe ₂ /BiClS	-0.51	ABC	0.52	-0.31	Ohmic (n)
PdTe ₂ /BiClSe	-0.49	ABC	1.8	-0.29	Ohmic (n)
PdTe ₂ /PbS ₂	-1.93	ABC	3.3	-0.26	Ohmic (n)
PdTe ₂ /Tl ₂ S ₂	-1.64	AB	0.34	-0.69	Ohmic (n)
PdTe ₂ /Tl ₂ Se ₂	-1.63	AB	3	-0.33	Ohmic (n)
PdTe ₂ /HgBr ₂	-0.34	AA	1	-0.28	Ohmic (n)
PdTe ₂ /YI ₂	-1.36	AA	1.1	-0.49	Ohmic (p)
PdTe ₂ /ScI ₂	-1.43	AA	0.98	-1.15	Ohmic (p)
NbSe ₂ /PbO ₂	-0.41	AC	2.30	-1.52	Ohmic (n)
NbSe ₂ /GeS ₂	-0.26	ABC	1.09	-0.22	Ohmic (n)
NbSe ₂ /ZrSSe	-0.21	AA	4.45	+0.14	Schottky (n)
NbSe ₂ /HfS ₂	-0.20	AA	2.56	+0.07	nearly Ohmic(n) < 0.1 eV
NbSe ₂ /ZrS ₂	-0.20	AA	1.75	+0.16	Schottky (n)
NbSe ₂ /In ₂ O ₂	-0.22	AB	1.20	-0.60	Ohmic (n)
NbSe ₂ /ZrBr ₂	-1.27	AA	2.29	-0.06	Ohmic (p)
NbSe ₂ /HfBr ₂	-0.22	AA	0.52	-0.11	Ohmic (p)
NbSe ₂ /TiBr ₂	-0.19	AA	0.29	-0.47	Ohmic (p)
NbSe ₂ /HfBrI	-1.37	AA	4.65	-0.12	Ohmic (p)
NbSe ₂ /TiBrI	-1.32	AA	4.34	-0.51	Ohmic (p)
NbSe ₂ /HfClI	-1.31	AA	2.76	-0.09	Ohmic (p)
NbSe ₂ /TiClI	-1.29	AA	2.01	-0.91	Ohmic (p)

FIG S10. Comparison of barrier height and contact type in actual van der Waals heterostructures of selected monolayers with predictions from the C2DB database.

FIG S11. In-plane averaged out-of-plane electrostatic potential of vdWHs formed with PdTe₂ metal monolayer and selected materials (Tl₂S₂, Tl₂Se₂, HgBr₂, PbS₂, BiClSe, BiClS, ScI₂, and YI₂). The grey shaded region represents metal-semiconductor interface.

FIG S12. The in-plane averaged out-of-plane electrostatic potential of NbSe₂ metal monolayer and selected materials of both n-type (GeS₂, In₂O₂, PbO₂, HfS₂, ZrS₂, and ZrSSe) and p-type (HfBr₂, TiBr₂, ZrBr₂, HfBrI, TiBrI and HfClI). The grey shaded region represents metal-semiconductor interface.

FIG S13. Charge density difference plot for all vdW heterostructures.

FIG S14. Trend of barrier height $(\varphi_{B,n}/\varphi_{B,p})$, electrostatic potential difference at the interface (ΔV_{int}) , and interfacial dipole moment, (μ) for actual vdW heterostructures.

FIG S15. Trend of vacuum level difference, (ΔV_{vac}) in the electrostatic potential for various vdW heterostructures.

FIG S16. Band structure (HSE06) of $PdTe_2/HgBr_2$ vdW heterostructures with different stacking order. The orange bubble represents the CBM the semiconducting monolayers.

Table – S4. Comparison of Schottky barrier height, interfacial charge, and interfacial dipole						
moment of PdTe ₂ /HgBr ₂ vdW heterostructures with different stacking orders						
Stacking	Schottky barrier height Interfacial charge Interfacial di					
	(e V)	induced	moment			
		$\Delta Q(e)$	μ (D)			
AA	-0.28	0.002162	-11.18			
AB	-0.79	-0.000085	-1.86			
AC	-0.72	0.000045	-1.82			