Supplementary Information

2 Impacts of Localized Charge Accumulation on

³ Photocurrent Dynamics in Metal-MoS₂ Contacts

4 Deogkyu Choi^{1,†}, Seungho Bang^{1,†}, Juchan Lee^{1,†}, Chaewon Lee¹, Jieun Jo¹, Young Joo Yu¹,

5 Chan Kwon¹, Hayoung Ko², Ki Kang Kim², Jinho Ahn^{3,*}, Eun Kyu Kim^{1,*}, and Mun Seok

6 $Jeong^{l,4,*}$

1

7 ¹Department of Physics, Hanyang University, Seoul 04763, Republic of Korea

- 8 ²Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
- 9 ³Division of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic
- 10 of Korea
- 11 ⁴Department of Semiconductor Engineering, Hanyang University, Seoul 04763, Republic of
- 12 Korea
- 13 * Address correspondence to mjeong@hanyang.ac.kr (Mun Seok Jeong), jiahn@hanyang.ac.kr
- 14 (Jinho Ahn), and ek-kim@hanyang.ac.kr (Eun Kyu Kim)
- 15 [†] These authors contributed equally.
- 16

3 Figure S1. (a) Conventional wet transfer process with PMMA and HF acid. (b) Patterning and
4 metallization for Ti/Au electrodes.

5 The chemical vapor deposition as-grown MoS₂ sample was spin-coated with PMMA and 6 floated onto deionized (DI) water. HF acid was poured into DI water, and then PMMA-MoS₂ 7 sample was detached from the Si-SiO₂ substrate. It was subsequently rinsed several times in 8 DI water for neutralization and transferred to a target substrate. After drying with DI water for 9 24 h, PMMA was dissolved, and a 1L-MoS₂ sample was prepared. Metallization is required to 10 fabricate the FET. For that, the photoresist was spin-coated onto the transferred sample and 2 lithography pattern generator (Litho maskless, Standard Science) and developed using the MIF 3 solution. Using sputtering or thermal evaporation, Ti/Au (5/50 nm) electrodes for the 4 drain/source contact were deposited on the 1L-MoS₂ sample and rinsed with acetone to remove 5 the photoresist residue. After metallization, thermal annealing (200 °C, 1~2 hours) was 6 conducted to ensure the ideal device performance.

1 pre-baked at 120 °C (1~2 minutes). The photoresist was then patterned by UV light using a

16

1 Evaluation of the electrical properties with IV curves

3 Figure S3. (a) Transfer characteristics measured at V_{ds} = 1 V and (b) output characteristics of
4 the MoS₂ device varied with V_{gs}.

5 The transfer and output characteristics were determined to confirm the electrical properties of the fabricated 1L-MoS₂ device and to determine its effectiveness. In Figure S3a, the 6 hysteresis observed in dual-sweeping transfer curves indicates the presence of interfacial trap 7 states between MoS₂ and SiO₂. Device field-effect mobility (μ_{eff}) and subthreshold swing (SS) 8 can be obtained by fitting the transfer characteristics. The channel length, width, and oxide 9 thickness of the device were L = 12.1 μ m, W = 30.2 μ m, and d = 300 nm, respectively. With 10 each ε_0 and ε_r corresponding to the vacuum permittivity and the gate oxide relative permittivity, 11 $C_{ox} = \epsilon_0 \epsilon_r / d = 11.5 \text{ nF/cm}^2$. The device mobility was estimated using the equation of field-12 13 effect mobility:

$$\mu_{eff} = \frac{L \, dI_{ds} / dV_{gs}}{W C_{ox} V_{ds}}$$

15 thus, $\mu_{eff} = 1.94 \text{ cm}^2/\text{V} \cdot \text{s}$ and the subthreshold swing is obtained as:

$$SS = (\frac{dlog_{10}I_{ds}}{dV_{gs}})^{-1}$$

2 Therefore, SS = 2.8 V/dec on the transfer curve. As shown in Figure S3b, Ohmic contact
3 behavior is well defined by the tendency of the drain current to vary with the drain voltage
4 (output characteristics).

12 Figure S4. Linear relation between the localized PC and laser power and their linear fitting13 line in the CA region (orange line).

2 Schottky barrier height calculation by 2D thermionic emission

4 Figure S5. (a) the output characteristics under the various temperatures. (b) the Arrhenius plot
5 under V_{ds} from 0.2 to 1 V.

To ensure SBH behavior in the MS junction, the drain to source I-V was investigated under
different temperatures using a 2D thermionic theory:

$$I_{ds} = AA_{2D}^{*}T^{3/2}exp[-\frac{q}{kT}(\Phi_{B} - \frac{V_{ds}}{n})]$$
(S1)

where A is the contact area, $A_{2D}^* = (q\sqrt{8\pi k^3 m^*})/h^2$ is the effective Richardson constant, q is 9 the elementary charge, $m^* = 0.42m_0$ is the effective mass of electron in 1 L-MoS₂, Φ_B is SBH, 10 and n is the ideality factor. In contrast to 3D bulk semiconductors, this 2D model accounts for 11 the reduced dimensionality of monolayer MoS₂, including the T^{1.5} dependency, reflecting the 12 2D carrier distribution in its conduction band. To confirm that the MS junction band bending 13 forms the CA region, Figure S5 shows that the SBH is calculated using the 2D thermionic 14 emission equation from S1 by plotting the temperature-dependent output curves to the 15 Arrhenius plot ($\ln(I/T^{1.5})$ against 1/kT). The slope was obtained from this plot and subsequently 16

1 expressed as slope versus V_{ds} . In Figure S5c, the y-intercept indicates $-q\Phi_B$, that is, SBH is 2 found to be -10 meV. This result demonstrates that ohmic contact and CA region formation are 3 valid in the Ti/Au-contacted 1L-MoS₂ device. As a result, band bending at the MS junction is 4 shallow, and the LCA region forms dominated by any potential barrier effects. In essence, these 5 findings confirm that the negative SBH is the primary cause of photocurrent reduction, 6 indicating the presence of activated trap states and excess carriers in the LCA regio, resulting 7 in enhanced scattering.

- 2 Arrhenius plot with hysteresis charge and N_t calculation with temperature dependent
- 3 transfer curves.

1

Gate voltage (V)
Figure S6. (a) Dual-sweeping transfer characteristics with temperature modulation from 120
to 300 K. (b) The threshold voltage difference depending on temperature. (c) Arrhenius plot
fitted by the exponential hysteresis charge equation of the hysteresis charge with simple
exponential components and thermal activation energy.

9 The temperature-dependent transfer curves provide hysteresis behavior widening the 10 hysteresis window as increasing temperature, as shown in Figure S6a. Further, threshold 11 voltage difference (ΔV) between forward and backward sweep curves can be obtained in Figure 12 S6b and evaluated as a hysteresis charge. This total hysteresis charge (ΔQ_{hy}) is fitted by the 13 exponential model with fixed and mobile trap charges:

$$14 \quad \Delta Q_{hy} = Q_1 + Q_2 e^{-E_a/_{kT}}$$
(S2)

15 where E_a is thermal activation energy. In Figure S6c, Q_1 and Q_2 are evaluated as 1.21×10^{-8} 16 C/cm² and 2.81×10^{-6} C/cm² indicating the fixed and mobile charges by thermal activation 17 within the interface region in general. Further, thermal activation energy is obtained with 0.091 18 eV, indicating trap level mainly occurring the interfacial capturing and releasing trap process. 19 The interface trap density N_t is also calculated with 5.94×10^{11} cm⁻² in the 300 K temperature 20 region, using the formula N_t= $\Delta Q_{hy}/q$."

2 Repeated observation of the localized PC reduction in other samples.

4 Figure S7. (a) OM, (b) Raman shift difference between A_{1g} and E_{2g}^1 mapping, (c) PL mapping, 5 and (d) PCM images of other sputter-fabricated Ti/Au-contacted 1L-MoS₂-based FET under 6 $V_{ds} = 0.5$ V and 500 nW of 532 nm laser (white solid line indicates 10 µm). (e) OM, and (f) 7 PCM images of the thermal evaporation-fabricated Ti/Au-MoS₂-based FETs.

8

1

9 PC degradation induced by the CA region was also observed in other devices by measuring 10 the localized PCM. This local photocurrent reduction can occur repeatedly in 1 L-MoS₂-based 11 optoelectronic devices because 2D materials are significantly restricted by the contact 12 materials.

- 13
- 14
- 15

- 1
- 2

3 The ratio of PC intensity and width between CA and channel regions varied with drain

4 voltage.

6 Figure S8. (a) Schematic band structures of low drain bias. (b) Width of CA and channel region
7 comparison varied with drain voltage 0.1 to 1.0 V.

8

5

9 In total channel length L=12.1 μ m, CA and channel region width is divided by the drain 10 voltage. At high V_{ds}, the CA width decreased compared to the widening channel width because 11 the forward-biased V_{ds} affected the bandwidth. In this result, the CA region induced by the MS 12 junction can be modulated by the drain bias, and subsequently, its width decreases in the 13 forwarding high V_{ds}.

- 15
- 16
- 17
- 18

3 The relationship between drain current and gate voltage.

1

2

Figure S9. (a) Schematic band structures of gate bias less than threshold voltage. (b) Drain
current measured at gate voltage from -20 to 20 V (red, green, and dark show the light, photo,
and dark current, respectively). (c) IQR analysis of the dark and photocurrent with the same
gate voltage range.

The dispersion of the position-dependent PC was reduced by increasing V_{gs} . 1L-MoS₂, a 9 conventional n-type semiconductor, exhibits a highly conductive channel in the high positive 10 11 gate voltage region. Consequently, this conductive channel significantly decreases the photocurrent generation in the entire 1L-MoS₂ channel owing to its extremely thin channel 12 depth, which is modulated entirely by the gate voltage. Lee et al. reported that the metal-13 14 insulator transition caused by the gate voltage degrades the photocurrent generation in the 1L-MoS₂ FET. As shown in Figure S8b, c, the dark current (drain current without any illumination) 15 consistently increased above $V_{gs} = 0$ V, whereas the photocurrent slightly increased at 16 approximately $V_{gs} = 0$ V and decreased at high V_{gs} . This result indicates that the metal-insulator 17 transition occurs in our 1L-MoS₂ FET, and the CA region induces a localized metallic state in 18 the junction, resulting in localized PC reduction. 19

2~ Dark and light carrier concentration depending on V_{gs} and δn extraction

Figure S10. (a) Each carrier concentration with $V_{gs} = -12$ to 36 V in the case of dark and light illumination. (b) photo-excited excess carrier concentration extracted by the difference between light and dark carrier concentration.

7 Figure S10 illustrates the variation in channel carrier concentration as V_{gs} is swept from -12 V to 36 V under both dark and light-illuminated conditions, also the resulting excess carrier 8 concentration generated by photoexcitation. These observations, however, represent channel-9 10 averaged carrier concentrations; further spatially-resolved measurements would help clarify 11 the precise local effects responsible for the photocurrent reduction in the LCA region. As 12 shown in Figure S10a, under dark conditions, the carrier concentration monotonically increases with increasing V_{gs}. In contrast, it remains consistently higher overall in the light-case. Notably, 13 the generation of additional photo-induced carriers becomes more prominent at negative and 14 low positive gate voltages, significantly enhancing the device's conductivity in the 15 subthreshold region. Meanwhile, Figure S10b demonstrates that the photoexcited excess carrier 16 17 concentration decreases as V_{gs} becomes more positive. This trend can be attributed to the 18 rapidly growing intrinsic carrier density at higher V_{gs}, which reduces the relative contribution of photoexcited carriers. Overall, analysis of the extracted carrier concentrations indicates that 19 20 the intrinsic carrier density and the photoexcited excess carrier density are on a similar order of magnitude, suggesting that electrons in this n-type device may play a direct role in the 21 observed reduction of photocurrent. 22

Figure S11. Normalized decaying photocurrent in both LCA and channel regions (the gradation of the background colors indicates the changing pattern from recombination centers to deep-level traps).

1 Figure S12. Normalized decaying photocurrent of (a) CA, (b) Ch regions.