Supporting Information for

High-Performance Optoelectronics Enabled by Synergistic Integration of 2D Heterostructures with Perovskite Quantum Dots

Xinli Ma^{1,3}, Linlin Wang^{1,2,3}; Xuyang Huang^{1,2}; Mariano Mahissi¹; Jing Jin¹; Yang Bai¹;

Huanqing Zou¹; Shengli Fan¹; Weiming Cai^{*1,4}

- 1. School of Information Science and Engineering, Ningbo-Tech University, Ningbo, China;
- 2. School of Information Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China;
 - 3. These authors contribute equally to this work;
 - 4. Author to whom any correspondence should be addressed:

Emil: caiwm@nit.zju.edu.cn.

Fig. S1 Surface potentials of MoS₂, WS₂ and BP before (a) and after (b) decoration with CsPbBr₃ QDs.

Fig. S2 PL spectra comparisons of CsPbBr3 , CsPbI3 and MAPbBr3 with different durations

Fig. S3 Time-resolved PL for CsPbBr₃ and CsPbBr₃/MoS₂, CsPbBr₃/WS₂ and CsPbBr₃/BP, respectively.

Fig. S4 Output curves for MoS₂, WS₂, and BP before (a) and after (b) decoration with CsPbBr₃.

Fig. S5 Repeatability dynamic optical responses of MoS₂, WS₂ and BP FETs before and after CsPbBr₃ decoration, respectively.

Fig.S6 calculated work functions and density of states plots of WS₂/MOS₂, CsPbBr₃/WS₂/MoS₂, BP/MoS₂ and CsPbBr₃/BP/MoS₂, respectively.

Fig. S7 Repeatability of dynamic optical responses for (a) CsPbBr₃/WS₂/MoS₂ and (b) CsPbBr₃/BP/MoS₂ FETs.

Fig. S8 Current noise power spectral density within the frequency range from 1 Hz to 100 kHz in the dark.

A bi-exponential decay model ($F(t) = \sum a_i e^{-(t-t_0)/\tau_i}$, i = 1,2) was used to fit the PL decay curves. Fast decay time τ_1 and slow decay time τ_2 were obtained from the fitting profile. The average

$$\tau = \sum \frac{A_i \tau_i^2}{A_i \tau_i}$$

PL lifetime τ is calculated as

 $\overline{A_i \tau_i}$. All values are summarized in Table S1.

Table S1 PL lifetimes calculations of CsPbBr₃ and CsPbBr₃/MoS₂, CsPbBr₃/WS₂ and CsPbBr₃/BP, respectively.

Sample	$\tau_{1}(s)$	$\tau_{2}(s)$	A_1 (%)	A ₂ (%)	$ au_{(s)}$
CsPbBr ₃	5.0	27.9	36.1	63.9	32.9
CsPbBr ₃ /MoS ₂	3.2	15.7	74.3	25.7	18.9
CsPbBr ₃ /WS ₂	3.7	16.8	72.7	27.3	20.4
CsPbBr ₃ /BP	4.9	19.7	62.6	37.4	24.6