Gold Nanorods as Multidimensional Optical Nanomaterials: Machine Learning-Enhanced Quantitative Fingerprinting of Proteins for Diagnostic Applications

Afsaneh Orouji^a[†], Mahdi Ghamsari^a[†], Samira Abbasi-Moayed^b, Mahmood Akbari^c, Malik Maaza^c, and Mohammad Reza Hormozi-Nezhad^{a,,*}

^aDepartment of Chemistry, Sharif University of Technology, Tehran, 111559516, Iran

^bDepartment of Analytical Chemistry, Faculty of Chemistry, Kharazmi University, Tehran, 15719-14911, Iran.

^cUNESCO-UNISA-iTALBS Africa Chair in Nanoscience & Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa

[†] These authors contributed equally.

*Corresponding authors:

- Mohammad Reza Hormozi-Nezhad, email: hormozi@sharif.edu ORCID iD: 0000-0002-7472-1850

Table of Contents

Content	Page
Chemicals and Materials.	85
Instrumentation and Characterization.	85
Synthesis of AuNRs.	85
Preparation of Britton-Robinson Buffer	S 6
Statistical Analysis.	S 6

Fig S1. The experimental setup used for image capturing: (a) Constructed box used for placing the 96-well plate, (b) method for capturing color images, (c) captured color image ready to be cropped to a specific size, and (d) side view of the plate showing the convex surface of the solution after overfilling the well.

Table S1. Structural characteristics of the eight studied proteins.

Fig S2. (a) Absorbance spectra of the synthesized AuNRs (brown line) and the AuNRs after etching by NBS (pink line). TEM images and corresponding images of (b) the synthesized AuNRs and (c) the AuNRs after etching by NBS.

S8

Fig S3. Time-dependent UV-Vis absorption spectra variations of differently-sized AuNRs with (a) 780 nm, (b) 760 nm, (c) 725 nm longitudinal peaks during etching process by NBS (etching duration: 30 min, Scan Rate: 2 scans/min). **S10**

Table S2. pH of the isoelectric point of eight proteins (i.e., ACP, Pep, Hem, TRF, IgG, Lys,Fib, and HSA)S11

Fig S4. Effect of NBS concentration on the multidimensional colorimetric responses of AuNRs, (a) color images of the probe's solution, (b) the absorption spectra of the proposed probe, and (c) the variation of PC-1 for the corresponding etching absorbance response as a function of NBS concentration. **S12**

Fig S5. Effect of incubation time on the responses of a multidimensional colorimetric probe. Absorbance spectra and variation of PC-1 for corresponding inhibited etching absorbance response profiles of the probe in the presence of (a, b) ACP, (c, d) Pep, (e, f) Hem, and (g, h) TRF **S13**

Fig S6. Effect of incubation time on the responses of a multidimensional colorimetric probe. Absorbance spectra and variation of PC-1 for corresponding inhibited etching absorbance response profiles of the probe in the presence of (a, b) IgG, (c, d) Lys, (e, f) Fib, and (g, h) HSA. **S14**

Fig S7. Response profile of all proteins with 10 min incubation time. (a) Absorbance spectra and (b) variation of PC-1 for corresponding inhibited etching absorbance response profiles of the multidimensional colorimetric probe S15

Fig S8. Absorption spectra variation of the multidimensional colorimetric probe in the presence of (a) 1.0, (b) 2.5, (c) 5.0, (d) 7.5, (e) 10.0, (f) 17.5, (g) 20.0, (h) 22.5, and (i) 25.0 ppm of different proteins. **S16**

Fig S9. Absorption spectra variation of the multidimensional colorimetric probe in the presence of (a) 27.5, (b) 30.0, (c) 32.5, (d) 35.0, (e) 37.5, (f) 40.0, (g) 45.0, (h) 50.0, and (i) 75.0 ppm of different proteins.

Fig S10. 2D LDA score plot discriminating different proteins at concentrations of (a) 1.0, (b) 2.5, (c) 5.0, (d) 7.5, (e) 10.0, (f) 17.5, (g) 20.0, (h) 22.5, and (i) 25.0 ppm. **S18**

Fig S11. 2D LDA score plot discriminating different proteins at concentrations of (a) 27.5, (b) 30.0, (c) 32.5, (d) 35, (e) 37.5, (f) 40.0, (g) 45.0, (h) 50.0, and (i) 75.0 ppm. **S19**

Table S3. Jackknifed classification matrix for the discrimination of eight protein samples (i.e.,ACP, Pep, Hem, TRF, IgG, Lys, Fib, and HSA) at 10 ppm concentration.S20

Table S4. Jackknifed classification matrix for the discrimination of eight protein samples (i.e.,ACP, Pep, Hem, TRF, IgG, Lys, Fib, and HSA) at 15.0 ppm concentration.S21

Fig S12. 2D LDA score plot discriminating different proteins based on CIELAB parameters at concentrations of (a) 1, (b) 2.5, (c) 5, (d) 7.5, (e) 10, (f) 12.5, (g) 15, (h) 17.5, (i) 20.0, and (j) 22.5 ppm.

Fig S13. 2D LDA score plot discriminating different proteins based on CIELAB parameters at concentrations of (a) 25.0, (b) 27.5, (c) 30.0, (d) 32.5, (e) 35.0, (f) 37, (g) 40.0, (h) 45.0, (i) 50.0, and (j) 75.0 ppm. **S23**

Fig S14. HCA dendrogram with Ward method for different proteins at concentrations of (a) 1.0, (b) 2.5, (c) 5.0, (d) 7.5, (e) 10.0, (f) 17.5, (g) 20.0, (h) 22.5, and (i) 25.0 ppm. No confusion in the classification of proteins was observed even in three replicates of the experiments. **S24**

Fig S15. HCA dendrogram with Ward method for different proteins at concentrations of (a) 1.0, (b) 2.5, (c) 5.0, (d) 7.5, (e) 10.0, (f) 17.5, (g) 20.0, (h) 22.5, and (i) 25.0 ppm. No confusion in the classification of proteins was observed even in three replicates of the experiments. **S25**

Fig S16. Radar plot fingerprints in the presence of different proteins at concentrations of (a) 1.0, (b) 2.5, (c) 5.0, (d) 7.5, (e) 10.0, (f) 17.5, (g) 20.0, (h) 22.5, and (i) 25.0 ppm. The first principal components derived from PCA were the response signals utilized to illustrate the radar plot. **S26**

Fig S17. Radar plot fingerprints in the presence of different proteins at concentrations of (a) 27.5, (b) 30.0, (c) 32.5, (d) 35.0, (e) 37.5, (f) 40.0, (g) 45.0, (h) 50.0, and (i) 75.0 ppm. The first principal components derived from PCA were the response signals utilized to illustrate the radar plot. **S27**

Fig S18. Predicted vs. measured concentration plots as multivariate calibration by PLSregression based on CIELAB parameters for (a) ACP, (b) Pep, (c) Hem, (d) TRF, (e) IgG, (f) Lys, (g) Fib, and (h) HSA in their entire concentration ratio range. **S28**

Fig S19. UV-Vis spectra variation of the multidimensional colorimetric probe in the presence of binary protein mixtures (a) HSA/Lys, (b) HSA/TRF, and ternary protein mixtures (c) HSA/Lys/TRF in their entire concentration ratio range (total concentration is 15.0 ppm). **S29**

Table S5. Jackknifed classification matrix for the discrimination of individual (HSA/TRF)binary protein mixture samples.S30

Table S6. Jackknifed classification matrix for the discrimination of individual (HSA/TRF)binary protein mixture samples.S31

Table S7. Jackknifed classification matrix for the discrimination of individual (HSA/Lys/TRF)ternary protein mixture samples.S32

Fig S20. Radar plot fingerprints in the presence of binary protein mixtures (a) HSA/Lys, (b) HSA/TRF, and ternary protein mixtures (c) HSA/Lys/TRF in their entire concentration ratio range. **S33**

Fig S21. Predicted vs. measured concentration plots as multivariate calibration by PLS-regression for binary protein mixtures (a) HSA/Lys, (b) HSA/TRF, and ternary protein mixtures (c) HSA/Lys/TRF as HSA. S34

Table S8. LDA posterior probability outcomes for identifying of protein unknown samples inhuman urine. (All 12 samples were given as a test set to the pre-trained LDA model.S35

References

S36

Chemicals and Materials

All of the chemicals were of high purity and used without any additional purification. The chemical hydrogen tetrachloroaurate (HAuCl₄.3H₂O) (99.5%), cetyltrimethylammonium bromide (CTAB), sodium borohydride (NaBH₄), ascorbic acid (AA), silver nitrate (AgNO₃), ortho-phosphoric acid (85%), acetic acid (glacial) (100%), boric acid, sodium borohydride, sodium hydroxide, and N-bromosuccinimide (NBS), were obtained from Sigma-Aldrich. Eight analytically pure proteins, including phosphatase ACP), pepsin (Pep), human hemoglobin (Hem), human transferrin (TRF), human immunoglobulin G (IgG), human lysozyme (Lys), human fibrinogen (Fib), and human serum albumin (HSA), were obtained from Sigma-Aldrich. All experiments were conducted using deionized (DI) water with the resistivity of 18.2 M Ω .

Instrumentation and Characterization

The visible absorption spectra of the samples were recorded using an Agilent Carry 60 spectrophotometer and 1.0 cm disposable cuvettes. Images of color variations were captured using the manual mode of a Samsung Galaxy A71 smartphone from the top of a 96-well plate placed on an opaque light box with white illumination. A convex surface was created by filling each well to overflow, allowing for the acquisition of a uniformly clear picture of the solution (Fig. S1). Using a Zeiss EM900 (Germany) transmission electron microscope with an acceleration voltage of 200 kV, morphological characteristics of AuNRs were investigated through transmission electron microscopy (TEM).

Synthesis of AuNRs

The synthesis of gold nanorods (AuNRs) was carried out using the previously described seedmediated growth strategy ¹. Initially, two separate solutions were prepared, one called the growth solution and the other the seed solution. For the seed solution, 0.125 mL of HAuCl4 (0.01 mol L⁻¹) was added to 5.0 mL of CTAB (0.1 mol L⁻¹) under vigorous stirring. After the addition of 0.3 mL of a freshly prepared ice-cold NaBH4 solution (0.01 mol L⁻¹), a brownishyellow solution containing gold nanoseeds was formed and stored at room temperature under continuous stirring and utilized within 2-5 hours. To prepare the growth solution, 2.5 mL of HAuCl₄ (0.01 mol L⁻¹) and 0.3 mL of AgNO₃ (0.01 mol L⁻¹) were sequentially introduced into 50.0 mL of CTAB (0.1 mol L⁻¹) while stirring vigorously. Subsequently, 0.3 mL of ascorbic acid (AA) with a concentration of 0.10 mol L⁻¹ was injected, and discoloration of the mixture as a result of the reduction of Au(III) to Au(I) was observed. After gently injecting 0.25 mL of the seed solution into the reaction mixture and halting the stirring after five seconds, the mixture was left undisturbed at room temperature overnight, during which the solution gradually turned light brown, indicating the growth of Au nanoseeds into AuNRs. A large (~1 L) batch of AuNRs with an aspect ratio of 3.7 and a longitudinal LSPR peak at 760 nm was synthesized and stored in the fridge in darkness for use throughout the experiments. This ensured uniformity across all experimental parameters and eliminated the need for recalibration or adjustments to the machine learning model. All data were collected using this single batch, ensuring that the machine learning models were trained and validated under consistent conditions, which enhanced the robustness and reliability of the detection system. AuNRs were separated from unbound CTAB through centrifuging the mixture at 8000 rpm for 15 minutes; the supernatant was discarded, and the sediment was then dispersed in 15 mL of deionized water.

Preparation of Britton-Robinson Buffer

A Britton-Robinson buffer solution at pH 7.0 was prepared by adjusting the pH of a mixture containing 0.04 mol L^{-1} boric acid (H₃BO₃), phosphoric acid (H₃PO₄), and acetic acid (CH₃COOH) using 0.2 mol L^{-1} sodium hydroxide (NaOH) ². Additionally, all analyte stock solutions were prepared using deionized (DI) water to achieve the required concentration levels.

Statistical Analysis

The machine learning algorithms were run using the Origin Pro 2018 and MATLAB R2013a. To evaluate the qualitative performance of the probe, the obtained dataset matrix was analyzed using the widely recognized classification technique known as Linear Discriminant Analysis (LDA) along with Principal Component Analysis (PCA) to reduce the dimensionality of the dataset as required. The quantitative performance of the probe was assessed by applying the Partial Least Squares Regression (PLSR) technique to the acquired dataset matrices for each protein without any dimension reduction. Leave-one-out cross-validation was used to evaluate the models' predictive accuracy by iteratively training on all but one data point and testing on the excluded point. To represent the statistical significance of the classifications, 2D confidence ellipses were sketched around the class centroids, showing 95% confidence limits. The MVC1 toolbox a well-known toolbox in MATLAB R2013a was applied to perform the PLSR modeling and calculate analytical Figures of merit for multivariate calibration such as correlation coefficient (R²), root-mean square error of calibration (RMSEC), cross-validation (RMSECV), prediction (RMSEP), sensitivity (SEN), analytical sensitivity (Anal. SEN), limit of detection (LOD), and limit of quantification (LOQ).

Fig S1. The experimental setup used for image capturing: (a) Constructed box used for placing the 96-well plate, (b) method for capturing color images, (c) captured color image ready to be cropped to a specific size, and (d) side view of the plate showing the convex surface of the solution after overfilling the well.

Table S1. Structural characteristics of the eight studied proteins.

	Mw	Total Amino Acid	Most Abundant		Oxidatio	Decarboxylation Reactivity	Specific			
	(kDa)	Count	Amino Acia	Cysteine Content	Methionine Content	Tryptophane Content	Tyrosine Content	Histidine Content	C-Terminal	- Feature
Phosphatase (ACP)	94	855	Alanine	2	1	1	3	2-3	Arginine	-
Pepsin (Pep)	35	327	Glutamic Acid	1	1	1	3	4	Glutamic acid	-
Hemoglobin (Hem)	64.5	574	Leucine	2	2	1	6-7	10-15	Histidine	four Fe ²⁺ ions
Transferrin (TRF)	76	679	Glutamic Acid	2	1	1	2	6-8	Lysine	two Fe ³⁺ ions
Immunoglobin G (IgG)	150	1320	Glutamic Acid	10-12	2	1	10-12	7-9	Lysine	-
Lysozyme (Lys)	14	129	Glutamic Acid	2	2	1	5	6	Leucine	-
Fibrinogen (Fib)	340	610	Glutamic Acid	6	2	1	10-12	3-4	Arginine	-
Albumin (HAS)	66.5	585	Glutamic Acid	35	2-3	1	15	10-12	Leucine	-

*The reported values are referenced from UniProt: The Universal Protein Knowledgebase (2024).

Fig S2. (a) Absorbance spectra of the synthesized AuNRs (brown line) and the AuNRs after etching by NBS (pink line). TEM images and corresponding images of (b) the synthesized AuNRs and (c) the AuNRs after etching by NBS.

Fig S3. Time-dependent UV-Vis absorption spectra variations of differently-sized AuNRs with (a) 780 nm, (b) 760 nm, (c) 725 nm longitudinal peaks during etching process by NBS (etching duration: 30 min, Scan Rate: 2 scans/min).

Sample	pH of the isoelectric point
ACP	4.7
Рер	1.0
Hem	7.5
TRF	5.6
IgG	7.4
Lys	9.4
Fib	5.8
HSA	4.7

Table S2. pH of the isoelectric point of eight proteins (i.e., ACP, Pep, Hem, TRF, IgG, Lys, Fib, and HSA).

Fig S4. Effect of NBS concentration on the multidimensional colorimetric responses of AuNRs, (a) color images of the probe's solution, (b) the absorption spectra of the proposed probe, and (c) the variation of PC-1 for the corresponding etching absorbance response as a function of NBS concentration.

Fig S5. Effect of incubation time on the responses of a multidimensional colorimetric probe. Absorbance spectra and variation of PC-1 for corresponding inhibited etching absorbance response profiles of the probe in the presence of (a, b) ACP, (c, d) Pep, (e, f) Hem, and (g, h) TRF.

Fig S6. Effect of incubation time on the responses of a multidimensional colorimetric probe. Absorbance spectra and variation of PC-1 for corresponding inhibited etching absorbance response profiles of the probe in the presence of (a, b) IgG, (c, d) Lys, (e, f) Fib, and (g, h) HSA.

Fig S7. Response profile of all proteins with 10 min incubation time. (a) Absorbance spectra and (b) variation of PC-1 for corresponding inhibited etching absorbance response profiles of the multidimensional colorimetric probe.

Fig S8. Absorption spectra variation of the multidimensional colorimetric probe in the presence of (a) 1.0, (b) 2.5, (c) 5.0, (d) 7.5, (e) 10.0, (f) 17.5, (g) 20.0, (h) 22.5, and (i) 25.0 ppm of different proteins.

Fig S9. Absorption spectra variation of the multidimensional colorimetric probe in the presence of (a) 27.5, (b) 30.0, (c) 32.5, (d) 35.0, (e) 37.5, (f) 40.0, (g) 45.0, (h) 50.0, and (i) 75.0 ppm of different proteins.

Fig S10. 2D LDA score plot discriminating different proteins at concentrations of (a) 1.0, (b) 2.5, (c) 5.0, (d) 7.5, (e) 10.0, (f) 17.5, (g) 20.0, (h) 22.5, and (i) 25.0 ppm.

Fig S11. 2D LDA score plot discriminating different proteins at concentrations of (a) 27.5, (b) 30.0, (c) 32.5, (d) 35.0, (e) 37.5, (f) 40.0, (g) 45.0, (h) 50.0, and (i) 75.0 ppm.

Table S3. Jackknifed classification matrix for the discrimination of eight protein samples (i.e., ACP, Pep, Hem, TRF, IgG, Lys, Fib, and HSA)
at 10.0 ppm concentration.

	Predicted Class													
	АСР	Рер	Hem	TRF	lgG	Lys	Fib	HSA	Total	Sensitivity	Specificity	Precision		
ACD	3	0	0	0	0	0	0	0	3	100	100	100		
ALP	100.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	- 100	100	100		
Don	0	3	0	0	0	0	0	0	3	100	100	100		
Pep	0.00%	100.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	100	100	100		
Hom	0	0	3	0	0	0	0	0	3	- 100	100	100		
nem	0.00%	0.00%	100.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	100	100	100		
TDE	0	0	0	3	0	0	0	0	3	- 100	100	100		
ĨŇĔ	0.00%	0.00%	0.00%	100.00%	0.00%	0.00%	0.00%	0.00%	100.00%	100	100	100		
InG.	0	0	0	0	3	0	0	0	3	- 100	100	100		
igo	0.00%	0.00%	0.00%	0.00%	100.00%	0.00%	0.00%	0.00%	100.00%	100	100	100		
lvs	0	0	0	0	0	3	0	0	3	100	100	100		
Lys	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	0.00%	0.00%	100.00%	100	100	100		
Fib	0	0	0	0	0	0	3	0	3	100	100	100		
FID	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	0.00%	100.00%	100	100	100		
ЦСЛ	0	0	0	0	0	0	0	3	3	- 100	100	100		
пза	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	100.00%	100	100	100		
Total	3	3	3	3	3	3	3	3	24	- 100	100	100		
Total	12.50%	12.50%	12.50%	12.50%	12.50%	12.50%	12.50%	12.50%	100.00%	100	100	100		

Nominal Class

		Predicted Class														
		АСР	Рер	Нет	TRF	lgG	Lys	Fib	HSA	Total	Sensitivity	Specificity	Precision			
	A.C.D.	3	0	0	0	0	0	0	0	3	100	100	100			
	ALP	100.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	100	100	100			
	Don	0	3	0	0	0	0	0	0	3	100	100	100			
Pep	0.00%	100.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	100	100	100				
Hom	0	0	3	0	0	0	0	0	3	- 100	100	100				
пет		0.00%	0.00%	100.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	100	100	100			
TRF	TDE	0	0	0	3	0	0	0	0	3	100	100	100			
	IKF	0.00%	0.00%	0.00%	100.00%	0.00%	0.00%	0.00%	0.00%	100.00%	100	100	100			
	In C	0	0	0	0	3	0	0	0	3	100	100	100			
	igu	0.00%	0.00%	0.00%	0.00%	100.00%	0.00%	0.00%	0.00%	100.00%	- 100	100	100			
	l.v.c	0	0	0	0	0	3	0	0	3	100	100	100			
	Lys	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	0.00%	0.00%	100.00%	- 100	100	100			
	Eih	0	0	0	0	0	0	3	0	3	100	100	100			
	FID	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	0.00%	100.00%	100	100	100			
	ЦСЛ	0	0	0	0	0	0	0	3	3	100	100	100			
	пза	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	100.00%	- 100	100	100			
	Total	3	3	3	3	3	3	3	3	24	100	100	100			
Total	12.50%	12.50%	12.50%	12.50%	12.50%	12.50%	12.50%	12.50%	100.00%	100	100	100				

Nominal Class

Table S4. Jackknifed classification matrix for the discrimination of eight protein samples (i.e., ACP, Pep, Hem, TRF, IgG, Lys, Fib, and HSA) at 15.0 ppm concentration.

Fig S12. 2D LDA score plot discriminating different proteins based on CIELAB parameters at concentrations of (a) 1, (b) 2.5, (c) 5, (d) 7.5, (e) 10, (f) 12.5, (g) 15, (h) 17.5, (i) 20.0, and (j) 22.5 ppm.

Fig S13. 2D LDA score plot discriminating different proteins based on CIELAB parameters at concentrations of (a) 25.0, (b) 27.5, (c) 30.0, (d) 32.5, (e) 35.0, (f) 37, (g) 40.0, (h) 45.0, (i) 50.0, and (j) 75.0 ppm.

Fig S14. HCA dendrogram with Ward method for different proteins at concentrations of (a) 1.0, (b) 2.5, (c) 5.0, (d) 7.5, (e) 10.0, (f) 17.5, (g) 20.0, (h) 22.5, and (i) 25.0 ppm. No confusion in the classification of proteins was observed even in three replicates of the experiments.

Fig S15. HCA dendrogram with Ward method for different proteins at concentrations of (a) 27.5, (b) 30.0, (c) 32.5, (d) 35.0, (e) 37.5, (f) 40.0, (g) 45.0, (h) 50.0, and (i) 75.0 ppm. No confusion in the classification of proteins was observed even in three replicates of the experiments.

Fig S16. Radar plot fingerprints in the presence of different proteins at concentrations of (a) 1.0, (b) 2.5, (c) 5.0, (d) 7.5, (e) 10.0, (f) 17.5, (g) 20.0, (h) 22.5, and (i) 25.0 ppm. The first principal components derived from PCA were the response signals utilized to illustrate the radar plot.

Fig S17. Radar plot fingerprints in the presence of different proteins at concentrations of (a) 27.5, (b) 30.0, (c) 32.5, (d) 35.0, (e) 37.5, (f) 40.0, (g) 45.0, (h) 50.0, and (i) 75.0 ppm. The first principal components derived from PCA were the response signals utilized to illustrate the radar plot.

Fig S18. Predicted vs. measured concentration plots as multivariate calibration by PLSregression based on CIELAB parameters for (a) ACP, (b) Pep, (c) Hem, (d) TRF, (e) IgG, (f) Lys, (g) Fib, and (h) HSA in their entire concentration ratio range.

Fig S19. UV-Vis spectra variation of the multidimensional colorimetric probe in the presence of binary protein mixtures (a) HSA/Lys, (b) HSA/TRF, and ternary protein mixtures (c) HSA/Lys/TRF in their entire concentration ratio range (total concentration is 15.0 ppm).

							Pred	icted Cl	ass					
		<i>9:1</i>	8:2	7:3	6:4	5:5	4:6	3:7	2:8	1:9	Total	Sensitivity	Specificity	Precision
	0.1	3	0	0	0	0	0	0	0	0	3	- 100	100	100
	9.1	100.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	100	100	100
	0.7	0	3	0	0	0	0	0	0	0	3	- 100	100	100
	0.2	0.00%	100.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	100	100	100
	7.2	0	0	3	0	0	0	0	0	0	3	- 100	100	100
	7:3	0.00%	0.00%	100.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	100	100	100
0155	6:4	0	0	0	3	0	0	0	0	0	3	- 100	100	100
วั		0.00%	0.00%	0.00%	100.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	100	100	100
a	5:5	0	0	0	0	3	0	0	0	0	3	- 100	100	100
ir		0.00%	0.00%	0.00%	0.00%	100.00%	0.00%	0.00%	0.00%	0.00%	100.00%	100	100	100
No	1.6	0	0	0	0	0	3	0	0	0	3	- 100	100	100
2	4.0	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	0.00%	0.00%	0.00%	100.00%	100	100	100
	2.7	0	0	0	0	0	0	3	0	0	3	- 100	100	100
	3.7	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	0.00%	0.00%	100.00%	100	100	100
	2.9	0	0	0	0	0	0	0	3	0	3	- 100	100	100
	2.0	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	0.00%	100.00%	100	100	100
	1.0	0	0	0	0	0	0	0	0	3	3	- 100	100	100
	1.9	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	100.00%	100	100	100
	Total	3	3	3	3	3	3	3	3	3	27	- 100	100	100
	Total	11.11%	11.11%	11.11%	11.11%	11.11%	11.11%	11.11%	11.11%	11.11%	100.00%	100	100	

Table S5. Jackknifed classification matrix for the discrimination of individual (HSA/Lys) binary protein mixture samples.

							Pred	icted Cl	lass					
		<i>9:1</i>	8:2	7:3	6:4	5:5	4:6	3:7	2:8	1:9	Total	Sensitivity	Specificity	Precision
	0.1	3	0	0	0	0	0	0	0	0	3	- 100	100	100
	9.1	100.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	100	100	100
	0.7	0	3	0	0	0	0	0	0	0	3	- 100	100	100
	0.2	0.00%	100.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	100	100	100
	7.2	0	0	3	0	0	0	0	0	0	3	- 100	100	100
	7:3	0.00%	0.00%	100.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	100	100	100
ass	6:4	0	0	0	3	0	0	0	0	0	3	- 100	100	100
כ		0.00%	0.00%	0.00%	100.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	100	100	100
a	5:5	0	0	0	0	3	0	0	0	0	3	- 100	100	100
in l		0.00%	0.00%	0.00%	0.00%	100.00%	0.00%	0.00%	0.00%	0.00%	100.00%	100	100	100
NO	1.6	0	0	0	0	0	3	0	0	0	3	- 100	100	100
2	4.0	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	0.00%	0.00%	0.00%	100.00%	100	100	100
	2.7	0	0	0	0	0	0	3	0	0	3	- 100	100	100
	5.7	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	0.00%	0.00%	100.00%	100	100	100
	2.8	0	0	0	0	0	0	0	3	0	3	- 100	100	100
	2.0	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	0.00%	100.00%	100	100	100
	1.0	0	0	0	0	0	0	0	0	3	3	- 100	100	100
	1.9	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	100.00%	100	100	100
	Total	3	3	3	3	3	3	3	3	3	27	- 100	100	100
	, otal	11.11%	11.11%	11.11%	11.11%	11.11%	11.11%	11.11%	11.11%	11.11%	100.00%	100	100	

Table S6. Jackknifed classification matrix for the discrimination of individual (HSA/TRF) binary protein mixture samples.

	Predicted Class													
	90:5:5	80:10:10	70:15:15	60:20:20	50:25:25	40:30:30	30:35:35	20:40:40	10:45:45	Total	Sensitivity	Specificity	Precision	
00.5.5	3	0	0	0	0	0	0	0	0	3	100	100	100	
90.5.5	100.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	100	100	100	
90.10.10	0	3	0	0	0	0	0	0	0	3	- 100	100	100	
80.10.10	0.00%	100.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	100	100	100	
70.15.15	0	0	3	0	0	0	0	0	0	3	- 100	100	100	
70.13.15	0.00%	0.00%	100.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	100	100	100	
60.20.20	0	0	0	3	0	0	0	0	0	3	- 100	100	100	
60:20:20	0.00%	0.00%	0.00%	100.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	100	100	100	
50.25.25	0	0	0	0	3	0	0	0	0	3	- 100	100	100	
50:25:25	0.00%	0.00%	0.00%	0.00%	100.00%	0.00%	0.00%	0.00%	0.00%	100.00%	100	100	100	
10.20.20	0	0	0	0	0	3	0	0	0	3	- 100	100	100	
40:50:50	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	0.00%	0.00%	0.00%	100.00%	- 100	100	100	
20.25.25	0	0	0	0	0	0	3	0	0	3	- 100	100	100	
50:55:55	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	0.00%	0.00%	100.00%	100	100	100	
20.40.40	0	0	0	0	0	0	0	3	0	3	- 100	100	100	
20:40:40	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	0.00%	100.00%	- 100	100	100	
10.45.45	0	0	0	0	0	0	0	0	3	3	- 100	100	100	
10:45:45	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	100.00%	100	100	100	
Total	3	3	3	3	3	3	3	3	3	27	- 100	100	100	
Total	11.11%	11.11%	11.11%	11.11%	11.11%	11.11%	11.11%	11.11%	11.11%	100.00%	100	100 100	100	

Table S7. Jackknifed classification matrix for the discrimination of individual (HSA/Lys/TRF) ternary protein mixture samples.

Nominal Class

Fig S20. Radar plot fingerprints in the presence of binary protein mixtures (a) HSA/Lys, (b) HSA/TRF, and ternary protein mixtures (c) HSA/Lys/TRF in their entire concentration ratio range.

Fig S21. Predicted vs. measured concentration plots as multivariate calibration by PLSregression for binary protein mixtures (a) HSA/Lys, (b) HSA/TRF, and ternary protein mixtures (c) HSA/Lys/TRF.

Table S8. LDA posterior probability outcomes for identifying of protein unknown samples in human urine. (All 12 samples were given as a test set to the pre-trained LDA model.

Alleged				Post p	probabilities				Allocated
integeu	ACP	Pep	Hem	TRF	IgG	Lys	Fib	HSA	
ACP-Real	1	0	0	0	0	0	0	0	ACP
ACP-Real	1	0	0	0	0	0	0	0	ACP
ACP-Real	1	0	0	0	0	0	0	0	ACP
Pep-Real	0	1	0	0	0	0	0	0	Pep
Pep-Real	0	1	0	0	0	0	0	0	Pep
Pep-Real	0	1	0	0	0	0	0	0	Рер
TRF-Real	0	0	8.96E-20	1	2.80E-123	0	0	0	TRF
TRF-Real	0	0	2.71E-40	1	1.20E-108	0	0	0	TRF
TRF-Real	0	0	7.23E-60	1	1.77E-106	0	0	0	TRF
Lys-Real	0	0	0	0	0	1	0	0	Lys
Lys-Real	0	0	0	0	0	1	0	0	Lys
Lys-Real	0	0	0	0	0	1	0	0	Lys

References

- 1. M. R. Hormozi-Nezhad, H. Robatjazi and M. Jalali-Heravi, *Analytica chimica acta*, 2013, **779**, 14-21.
- 2. H. T. S. Britton and R. A. Robinson, *Journal of the Chemical Society (Resumed)*, 1931, 1456-1462.