Supplementary Information

Covalent Organic Framework Encapsulated Multi-Walled Carbon Nanotubes for Ultrasensitive Electrochemical Determination of Lead Ions in Water and E-Cigarette Samples

Hao Zhang^{a,f}, Hao Cheng^a, Dan Chen^b, Chunqiong Wang^{b*}, Jintao Mao^c, Zhihua Yang^c,

Wen-Tong Chend, Lijun Lia* and Guangzhi Hue,f*

^a Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China.

^b Yunnan Tobacco Quality Supervision and Test Station, Kunming 650106, China.

^c Heqing County Forestry Ecological Investment Development Co., Ltd, Dali 671500, China.

^d Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an 343009, China.

^e Institute for Advanced Study, Chengdu University, Chengdu 610106, China.

^f Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.

*The corresponding author E-mail addresses: <u>wangchunqiong.ytqs@outlook.com</u> (C. Wang), <u>lilijun0562@sina.com</u> (L. Li), and <u>guangzhihu@ynu.edu.cn</u> (G. Hu).

S1. Modification and preparation of electrodes

Initially, the glassy carbon electrode (GCE) was polished using 0.5 μ m and 50 nm alumina (Al₂O₃) powders to achieve a mirror-like finish. Following this, ultrasonic cleaning was conducted with ethanol, followed by rinsing with deionized water. After that, the electrode surface was dried with nitrogen. Subsequently, the electrode surface was dried using nitrogen. The ground Tp-Bpy-COFs@MWCNTs were then weighed to 0.5 mg and placed into a 1.5 ml vial containing 950 μ L of deionized water and 50 μ L of Nafion, following optimized conditions to create the dispersion solution. This prepared solution underwent ultrasonic treatment for 20 minutes to ensure even dispersion. The uniformly dispersed droplets were then deposited onto the surface of the glassy carbon electrode (GCE) to fabricate Nafion@Tp-Bpy-COF@MWCNTs-GCE. The preparation process for other modified electrodes followed a similar approach.

S2. Electrochemical measurement

All tests for lead ions were conducted using an RST5000 electrochemical workstation and a 100 mL electrolyzer, employing square wave stripping voltammetry (SWASV) in a HAc-NaAc buffer. To prepare the e-cigarette digestion solution, 0.3-0.4 g of e-cigarette liquid is first weighed and placed in a polytetrafluoroethylene tank. Simultaneously, a blank sample is prepared by adding 5 mL of nitric acid and 2 mL of hydrogen peroxide. Following the microwave digestion procedure outlined in the standard, the reaction mixture is heated. After digestion, the tube is removed, and the digestion solution is transferred to a 50 mL reagent bottle. The inner tank is rinsed with water three times, and the washing solution is combined and adjusted to the appropriate volume. Finally, the sample is tested using the GB5009.9-2014 conditions.

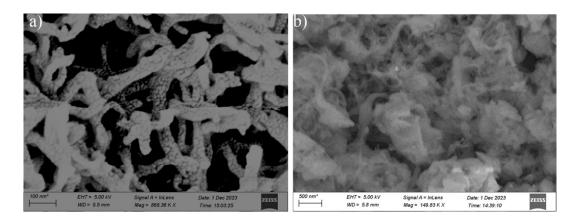


Fig. S1. (a-b) SEM image of Tp-Bpy-COFs@MWCNTs.

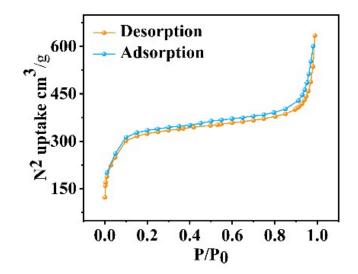


Fig. S2. BET image of Tp-Bpy-COFs@MWCNTs.

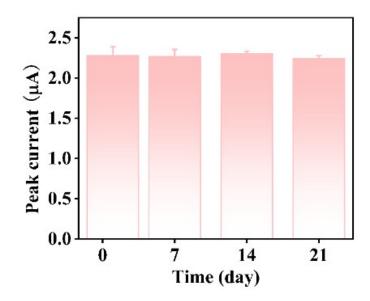


Fig. S3. Stability of Tp-Bpy-COFs@MWCNT/Nafion/GCE.

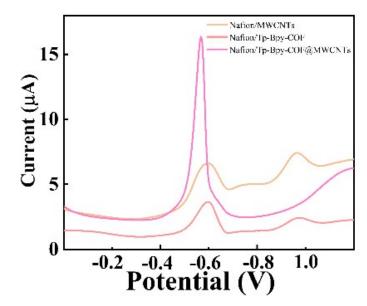


Fig. S4. Comparison of SWASV Performance for Naftion/COF@MWCNTs, Naftion/COF, and Naftion/MWCNTs.

Table. S1. Material name abbreviation	

Full name of material	Abbreviation
Graphene oxide	rGO
Chitosan	CS
Na ₉ [BiW ₉ O ₃₃]·16H ₂ O	BiW ₉
Nanoporous carbon	NPS
1,3,6,8-pyrenetetrasulfonic acid	PyTS
sodium salt-functionalized	
Carbon nanohorns	CNHs
Polyaniline	PANI
Laser scribed graphene	LSG
Electrochemically reduced graphene	ErGO
oxide	
Cellulose graphene	CSG
BC-Au electrode and ionic liquid	CILE
carbon paste electrode	
Graphene	G

Detection Method Comparison	Electrochemical Method (SWASV)	AAS	ICP-MS
Equipment Cost	Low	Medium	High
Detection Time	Simple operation, rapid	Requires complex	Requires high technical
	detection	preprocessing, long	support, long detection
		detection time	time
Portability	Suitable for on-site	Laboratory detection	Laboratory detection
	detection	ž	2
Sensitivity	Up to 10 ⁻⁹ M (depending on material	Up to 10 ⁻⁶ M	Up to 10 ⁻¹² M
	modification)		

Table. S2. Comparison of Detection Methods for Pb²⁺ Analysis