## ELECTRONIC SUPPLEMENTARY INFORMATION

Colloidal Gold-Palladium-Platinum Alloy Nanospheres with Tunable Compositions and Defined Number of Atoms

Sergio Triviño-Sánchez,<sup>a</sup> Ren Xu,<sup>a</sup> Jesús González-Izquierdo, <sup>a</sup> Luis Bañares, <sup>a</sup> Israel Cano, <sup>b</sup> Jorge Pérez-Juste, <sup>c</sup> Andrés Guerrero-Martínez<sup>\* a</sup> and Guillermo González-Rubio<sup>\*a</sup>

<sup>a</sup> Departamento de Química Física, Universidad Complutense de Madrid, 28040 Madrid, Spain. <sup>b</sup> Departamento de Química Inorgánica, Universidad Complutense de Madrid, 28040 Madrid, Spain.

<sup>c</sup> Departamento de Química Física, Universidad de Vigo, 36310 Vigo, Spain.

\*Corresponding authors' e-mail: aguerrero@quim.ucm.es, ggrubio@ucm.es

| NCs                                                     | [Au⁰] (M) | [Pd <sup>2+</sup> ] | [Pd <sup>o</sup> ] | [Pt <sup>2+</sup> ] |
|---------------------------------------------------------|-----------|---------------------|--------------------|---------------------|
| Au <sub>7</sub> @Pd <sub>93</sub> NCs                   | 0.03      | 0.4                 |                    |                     |
| Au <sub>10</sub> @Pd <sub>90</sub> NCs                  | 0.044     | 0.4                 |                    |                     |
| Au <sub>18</sub> @Pd <sub>82</sub> NCs                  | 0.087     | 0.4                 |                    |                     |
| Au <sub>7</sub> @Pd <sub>63</sub> @Pt <sub>30</sub> NCs | 0.093     |                     | 0.83               | 0.4                 |
| Au <sub>7</sub> @Pd <sub>33</sub> @Pt <sub>60</sub> NCs | 0.046     |                     | 0.22               | 0.4                 |
| Au <sub>7</sub> @Pt <sub>93</sub> NCs                   | 0.03      |                     |                    | 0.4                 |

**Table S1.** Experimental feeding ratios employed for the synthesis of the different bimetallic and trimetallic heterostructures



**Fig. S1.** Low-magnification TEM image of 30 nm Au NCs used as seeds for the growth of Au@Pt, Au@Pd and Au@Pd@Pt NCs and the corresponding size distribution histogram (inset).



**Fig. S2.** Low-magnification TEM image of  $Au_7@Pd_{93}$  NCs and the corresponding size distribution histogram (inset).



**Fig. S3.** Low-magnification TEM image of  $Au_{10}@Pd_{90}$  NCs and the corresponding size distribution histogram (inset).



**Fig. S4.** Low-magnification TEM image of  $Au_{18}@Pd_{82}NCs$  and the corresponding size distribution histogram (inset).



**Fig. S5.** Low-magnification TEM image of  $Au_7@Pd_{33}@Pt_{60}$  NCs and the corresponding size distribution histogram (inset).



**Fig. S6.** Low-magnification TEM image of  $Au_7@Pd_{63}@Pt_{30}$  NCs and the corresponding size distribution histogram (inset).



**Fig. S7.** Low-magnification TEM image of  $Au_7@Pt_{93}$  NCs and the corresponding size distribution histogram (inset).

| NCs                                                     | Au %      | Pd %       | Pt %       |
|---------------------------------------------------------|-----------|------------|------------|
| Au <sub>7</sub> @Pd <sub>93</sub> NCs                   | 7.5 ± 0.7 | 92.5 ± 0.7 |            |
| Au <sub>7</sub> Pd <sub>93</sub> NCs                    | 5.3 ± 0.2 | 94.7 ± 0.2 |            |
| Au <sub>7</sub> @Pd <sub>63</sub> @Pt <sub>30</sub> NCs | 6.9 ± 0.5 | 64 ± 1     | 29 ± 1     |
| Au <sub>7</sub> Pd <sub>63</sub> Pt <sub>30</sub> NCs   | 5.2 ± 0.3 | 58.5 ± 0.3 | 36.3 ± 0.3 |
| Au <sub>7</sub> @Pd <sub>33</sub> @Pt <sub>60</sub> NCs | 7.5 ± 0.3 | 33.5 ± 0.9 | 59.0 ± 0.8 |
| Au <sub>7</sub> Pd <sub>33</sub> Pt <sub>60</sub> NCs   | 4.4 ± 0.2 | 27.8 ± 0.9 | 67.8 ± 0.9 |
| Au <sub>7</sub> @Pt <sub>93</sub> NCs                   | 8.1 ± 0.8 |            | 91.9 ± 0.8 |
| Au <sub>7</sub> Pt <sub>93</sub> NCs                    | 7 ± 1     |            | 93 ± 1     |

**Table S2.** Elemental atomic composition of the synthesized heterostructure and alloy NCs determined through EDX spectroscopy.



**Fig. S8.** Normalized UV-Vis-NIR spectra of Au NCs (black, A-D),  $Au_7@Pd_{93}$  NCs (red, A),  $Au_7@Pt_{93}$  NCs (red, B),  $Au_{10}@Pd_{90}$  NCs (red, C) and  $Au_7@Pd_{63}@Pt_{30}$  NCs (blue, C),  $Au_{18}@Pd_{82}$  NCs (red, D) and  $Au_7@Pd_{33}@Pt_{60}$  NCs (blue, D).



**Fig. S9.** Low-magnification TEM image, size distribution histogram (left inset) and UV-Vis-NIR spectra of Au<sub>7</sub>Pd<sub>93</sub> NCs (right inset, red) synthesized *via* irradiation of Au<sub>7</sub>@Pd<sub>93</sub> NCs with nspulsed laser irradiation (right inset, black).



**Fig. S10.** Low-magnification TEM image, size distribution histogram (left inset) and UV-Vis-NIR spectra of Au<sub>7</sub>Pt<sub>93</sub> NCs (right inset, red) synthesized *via* irradiation of Au<sub>7</sub>@Pt<sub>93</sub> NCs with nspulsed laser irradiation (right inset, black).



**Fig. S11.** Low-magnification TEM image, size distribution histogram (left inset) and UV-Vis-NIR spectra of  $Au_7Pd_{63}Pt_{30}$  NCs (right inset, red) synthesized *via* irradiation of  $Au_7@Pd_{63}@Pt_{30}$  NCs with ns-pulsed laser irradiation (right inset, black).



**Fig. S12.** Low-magnification TEM image, size distribution histogram (left inset) and UV-Vis-NIR spectra of  $Au_7Pd_{33}Pt_{60}$  NCs (right, red) synthesized *via* irradiation of  $Au_7@Pd_{33}@Pt_{60}$  NCs with nspulsed laser irradiation (right inset, black).



**Fig. S13.** Low-magnification TEM images of  $Au_7Pd_{93}$  NCs (A),  $Au_7Pt_{93}$  NCs (B),  $Au_7Pd_{63}Pt_{30}$  NCs (C) and  $Au_7Pd_{33}Pt_{60}$  NCs (D) irradiated at a high fluence (96 J/m<sup>2</sup>), for which fragmentation of the excited NCs occurred.



Fig. S14. Elemental distribution by EDX line scan through the centre of the reconstructed of two  $Au_7Pd_{33}Pt_{60}$  NCs.



**Fig. S15.** (A) Time-dependence evolution of 4-nitrophenol absorbance at 400 nm during the reduction process catalysed by  $Au_7Pd_{93}$  NCs, where the graphs represent a series of experiments performed to investigate the reproducibility and reliability of the obtained results ([NaBH<sub>4</sub>] = 80 mM). (B-D) The  $-ln(A(t)/A(t_0))$  vs. time plot (black) derived from the adjacent absorbance data and the fitted curve (red) from which  $k_{app}$  is extracted.



**Fig. S16.** (A) Time-dependence evolution of 4-nitrophenol absorbance at 400 nm during the reduction process catalysed by  $Au_7Pd_{63}Pt_{30}$  NCs, where the graphs represent a series of experiments performed to investigate the reproducibility and reliability of the obtained results ([NaBH<sub>4</sub>] = 80 mM). (B-D) The  $-ln(A(t)/A(t_0))$  vs. time plot (black) derived from the adjacent absorbance data and the fitted curve (red) from which  $k_{app}$  is extracted.



**Fig. S17**. (A) Time-dependence evolution of 4-nitrophenol absorbance at 400 nm during the reduction process catalysed by  $Au_7Pd_{33}Pt_{60}$  NCs, where the graphs represent a series of experiments performed to investigate the reproducibility and reliability of the obtained results ([NaBH<sub>4</sub>] = 80 mM). (B-D) The  $-ln(A(t)/A(t_0))$  vs. time plot (black) derived from the adjacent absorbance data and the fitted curve (red) from which  $k_{app}$  is extracted.



**Fig. S18.** (A) Time-dependence evolution of 4-nitrophenol absorbance at 400 nm during the reduction process catalysed by  $Au_7Pt_{93}$  NCs, where the graphs represent a series of experiments performed to investigate the reproducibility and reliability of the obtained results ([NaBH<sub>4</sub>] = 80 mM). (B-D) The  $-ln(A(t)/A(t_0))$  vs. time plot (black) derived from the adjacent absorbance data and the fitted curve (red) from which  $k_{app}$  is extracted.



**Fig. S19.** (A–E) Time-dependence evolution of 4-nitrophenol absorbance at 400 nm during the reduction process catalysed by Au<sub>7</sub>Pd<sub>93</sub> NCs, where each graph represents a different concentration of NaBH<sub>4</sub>. (F–J) The  $-\ln(A(t)/A(t_0))$  vs. time plot (black) derived from the adjacent absorbance data and the fitted curve (red) from which  $k_{app}$  is extracted.



**Fig. S20.** (A–E) Time-dependence evolution of 4-nitrophenol absorbance at 400 nm during the reduction process catalysed by  $Au_7Pd_{63}Pt_{30}$  NCs, where each graph represents a different concentration of NaBH<sub>4</sub>. (F–J) The  $-ln(A(t)/A(t_0))$  vs. time plot (black) derived from the adjacent absorbance data and the fitted curve (red) from which  $k_{app}$  is extracted.



**Fig. S21.** (A–E) Time-dependence evolution of 4-nitrophenol absorbance at 400 nm during the reduction process catalysed by  $Au_7Pd_{33}Pt_{60}$  NCs, where each graph represents a different concentration of NaBH<sub>4</sub>. (F–J) The  $-ln(A(t)/A(t_0))$  vs. time plot (black) derived from the adjacent absorbance data and the fitted curve (red) from which  $k_{app}$  is extracted.



**Fig. S22.** (A–E) Time-dependence evolution of 4-nitrophenol absorbance at 400 nm during the reduction process catalysed by  $Au_7Pt_{93}$  NCs, where each graph represents a different concentration of NaBH<sub>4</sub>. (F–J) The  $-ln(A(t)/A(t_0))$  vs. time plot (black) derived from the adjacent absorbance data and the fitted curve (red) from which  $k_{app}$  is extracted.



**Fig. S23.** Variation of  $k_{app}$  with the concentration of sodium borohydride for the catalytic reduction of 4-nitrophenol using Au<sub>7</sub>Pd<sub>33</sub>Pt<sub>60</sub> NCs (A), Au<sub>7</sub>Pd<sub>63</sub>Pt<sub>30</sub> NCs (B), Au<sub>7</sub>Pd<sub>93</sub> NCs (C) and Au<sub>7</sub>Pt<sub>93</sub> NCs (D) as catalysts. A linear variation of  $k_{app}$  can be noticed in the 20-100 mM range in all cases, except for that of Au<sub>7</sub>Pd<sub>93</sub> NCs, which occurs in the 20-80 mM range. These results indicate that the concentration of sodium borohydride utilized in this work (80 mM) is sufficiently high to consider the validity of the pseudo-first-order reaction assumption.



**Fig. S24.** Optical density kinetic traces at 400 nm recorded during the sequential reduction of 4nitrophenol through the addition of 58 mM nitrophenol after each catalytic cycle in the presence of 80 mM NaBH<sub>4</sub>. Each addition is marked with distinct colours, grey: first, red: second, blue: third, green: fourth, purple: fifth, yellow: sixth, cyan: seventh and brown: eighth. The determined  $k_{norm}$  were: 8.4 10<sup>6</sup>, 7 10<sup>6</sup>, 6.2 10<sup>6</sup>, 4.2 10<sup>6</sup>, 3.8 10<sup>6</sup>, 3.7 10<sup>6</sup>, 3.7 10<sup>6</sup>, 3.7 10<sup>6</sup> mol<sup>-1</sup>·s<sup>-1</sup>·M<sup>-1</sup>, respectively.